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1 Introduction

This thesis proposal focuses on designing micro-architectural side-channel-resistant processors with
comprehensive security guarantees and high performance, and concurrently constructing novel
attacks to defeat existing side-channel mitigations.

In the last 90s, when the rapid advancement in computer architecture design constantly delivers
performance improvement, researchers started to realize that the data-dependent nature of those
designs could leak the processed sensitive data [7, 4]. Since then, numerous processor structures
have been exploited to leak different sensitive information, which turns micro-architectural side
channels a substantial threat to today’s computing industry [6, 9].

Given that side-channel resistance now becoming a priority for both software and hardware
designers, both parties propose different approaches for addressing the side-channel threat. First,
since the micro-architecture side-channel stems from the processor design, fixes from the hardware
side provide direct and promising answers to this issue. Usually, the fixes will separately target
individual vulnerabilities, with minimal impact on the overall performance. Since hardware is a
synergy of countless structures, fixing side channels individually without a holistic view is always
incomplete. Besides, given the amount and complexity of performance optimizations in modern
processors, hardware designers usually fail to identify all the side channel vulnerabilities. The
missing holistic analysis and protection for modern processors is the primary challenge in side-
channel research.

Software mitigations, despite being more timely than hardware fixes, are also insufficient in ad-
dressing side-channel attacks. Since hardware details are abstracted from software, those defenses
can only address specific side-channel attacks instead of providing comprehensive side-channel
protection. Additionally, software mitigations cannot react to future side channels resulting from
hardware changes. This lack of security specification between hardware and software precludes any
valid and accurate side-channel assessment for software applications.

To overcome the challenges in existing micro-architectural side-channel mitigations, this pro-
posal is devoted to mitigating micro-architectural side-channel attacks comprehensively
and efficiently, using hardware-based side-channel abstractions, with the following two
general directions:

Thrust 1: Building general hardware-based side-channel abstractions (existing works)
For this direction, we present three existing works (section 2) to demonstrate that by constructing
general abstractions covering broad micro-architectural leakages, we can develop simple yet holistic
side-channel defenses, and at the same time, avoid unnecessary performance costs of the defense.
“Data Oblivious ISA” [18] or OISA in short is the first proposal to add security specification at
the instruction set architecture (ISA) level. The security specification precisely defines whether
user-defined private data can be leaked through a given instruction’s operand. With this new ISA,
writing high-performance, side-channel-free applications becomes reality. In response to the more
recent speculative execution attacks [6, 9], we introduced a taxonomy of all covert channels in
modern processors that could lead to speculative leakage. The final product, named “Speculative
Taint Tracking” [20] or STT, prevents any speculatively executed instruction from leaking specu-
latively accessed data through any data-dependent hardware activities. Due to the classification
of covert channels and precise security policy, STT is the first speculative attack mitigation with
provable security guarantees. The follow-up work “Speculative Data-Oblivious Execution” [19], or
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SDO, is built based on STT to inherit STT’s comprehensive security guarantees. Meanwhile, it im-
proves several conservation protection approaches adopted by STT for reducing STT’s performance
overhead while keeping the security guarantees intact.

Thrust 2: Attacking existing software-based side-channel mitigations (ongoing works)
For this direction, we aim to illustrate that pure software-based side-channel mitigations without
any guarantees from the hardware are insufficient, with two of my ongoing works (section 3). To
start, we focus on a series of side-channel attacks with the purpose of leaking secret-dependent
control flow and their corresponding software-based mitigations. These software mitigations ap-
ply different code transformations to eliminate the code patterns that are exploited in the side
channel, without completely eliminating the secret-dependent control flow. In this ongoing work,
we develop a new side-channel attack capable of leaking the full control flow from the victim pro-
gram’s execution, in the form of dynamic PC sequences. This attack demonstrates that software-
only approaches are insufficient to deliver provable security guarantees for today’s complex and
constantly-evolving processors. Another important class of software mitigations focuses on pre-
venting side-channel attackers from observing secret-dependent hardware resource usage. Since
most side-channel attackers rely on high-precision hardware performance counters, such as timers
to measure how hardware resource states react to the secret data and further deduce the secrets,
many defenses are proposed to disable or fuzz the performance counters. However, we claim that
those software approaches still cannot achieve the ideal security guarantee since no evidence is
available showing that performance counters are the only reliable way to measure hardware re-
source usage. In fact, in our ongoing project, we aim to show a fundamental hardware primitive,
load-linked and store-conditional instructions, is a reliable channel for detecting cache evictions.
Using these two instructions, the attacker can accurately observe the memory access pattern of a
process running on the same processor.

2 Existing Works

2.1 Data-Oblivious ISA

Amajor obstacle that keeps software developers from building side-channel-free and high-performance
applications, is the lack of knowledge about hardware implementation. As an example, data-
oblivious programming has been proposed to block any side-channel leakage by not incurring ob-
servable secret-dependent hardware resource usage. However, running data-oblivious programs on
modern processors is neither secure nor efficient. The software-hardware interface, ISA, is a func-
tional specification rather than an implementation specification. As a result, hardware designers
have the freedom to add arbitrary features to hardware, which may open up new side channels.
Besides, writing programs to avoid data-dependent behaviors is inherently inefficient.

To address this obstacle, in Data Oblivious ISA [18] or OISA, we propose a series of ISA
design principles for data oblivious programming. The ISA design principles we proposed expand
existing ISA with security specifications, allowing software and hardware to communicate side-
channel-related information, without disclosing the hardware implementation details. The ISA
design principles are two-fold: First, the software can denote data as public and private, with only
private data protected by the hardware. Second, each instruction operand is either safe or unsafe.
An unsafe operand induces attacker-observable data-dependent execution which leaks information
about the consumed data.

With the definition of data and operand types, OISA imposes strict security policies that
hardware must enforce to avoid leaking private data. Public data can be consumed by both
safe and unsafe operands. Private data is only allowed to be consumed by safe operands, which
hardware implementation promises to hide attacker-observable data-dependent behaviors. Private
data consumed by unsafe operands are strictly prohibited and will throw a hardware exception
before the instruction execution starts. In addition, to prevent the leakage of any information
about private data, OISA requires hardware to employ the information-flow tracking mechanism
to track all data dependent on the user-labeled private data at the hardware level.

Aside from the strong and comprehensive security guarantees, with the safe operand seman-
tics, OISA can incorporate existing hardware-based side-channel mitigation strategies depending
on each microarchitecture and its performance requirements. For example, to protect secret ad-
dress operands, one can break memory instruction into simpler data-oblivious instructions, or opt
for cryptographic techniques [14] or hardware paritioning [15] which yield asymptotically better
performance with more hardware cost.
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Based on the design methodology described above, in this work, we design a concrete OISA
based on the existing RISC-V instruction set, with a hardware prototype and simulation frame-
work on top of RISC-V BOOM processor [2]. We demonstrate that OISA is capable of enhancing
existing instruction sets and commodity processors with provable and holistic side-channel secu-
rity guarantees. At the same time, OISA provides great compatibility in incorporating existing
defense techniques on commodity processors to further reduce the performance cost of side-channel
defenses.

2.2 Speculative Taint Tracking

Despite being a holistic side-channel defense, OISA is limited by its requirement of manual data
labeling (which is often impractical) and intrusive hardware modifications in various hardware
structures. With the surge of speculative execution attacks [6, 9] in recent years, we present
Speculative Taint Tracking [20], or STT, as a comprehensive mitigation for speculative execution
attacks.

Similar to classic side-channel attacks, speculative execution attacks leverage data-dependent
hardware resource usage (e.g., cache) to infiltrate program secrets. What separates speculative
attacks from other side channels is its capability of utilizing hardware speculation to acquire
secret data that are not reachable from valid program flows, when data is accessed during a
mis-speculation. Therefore, a natural (and conservative) approach to defeat speculative attacks
is to delay the execution of instructions that reads those secrets, until the instructions become
non-speculative.

STT’s premise is that it is safe to execute the selectively forward outputs of speculative instruc-
tions which read secrets, as long as the forwarded outputs do not reach micro-architectural covert
channels. Since user-labeling is impractical and cannot cover all the secret information that is
accessible with the presence of speculative execution, STT deems any data returned by speculative
memory accesses secrets. STT also leverages hardware-based taint tracking logic for tracking the
information flow of secrets, akin to OISA.

To achieve its security goal, STT presents the first taxonomy of all micro-architectural covert
channels that a speculative attacker could harness, and provides sound protection for secrets in the
context of speculative attacks by preventing speculatively accessed data from reaching the covert
channels. Specifically, STT classifies micro-architectural covert channels into explicit channels and
implicit channels. Explicit channels refer to the interactions between certain instruction types
and various data-dependent hardware resources, such as cache, TLB. STT delays the execution of
instructions that deliver secret data into explicit channels. Implicit channels refer to the influence
of secret data on subsequent speculative execution, by making the state of hardware predictors
depend on the secrets. Similarly, for eradicating implicit channels, STT delays the impact of secret
data on hardware predictors. On the other hand, it is essential to relax the protection for secret
data (i.e. canceling the delays) as soon as doing so is safe. We identify that the earliest time is
when the instruction(s) producing the protected data become non-speculative, and design a novel
hardware technique for disabling protection at that moment.

Overall, STT delivers comprehensive and provable security protection against speculative exe-
cution attacks in general, with a modest performance overhead (8.5% to 22.4% depending on the
threat model and the tested benchmark suite).

2.3 Speculative Data-Oblivious Execution

STT provides strong and comprehensive protection against speculative execution attacks, but its
performance still remains to be improved. After analysis of STT’s performance overhead, we found
that 97% of the overhead is due to delaying imposed by explicit channels, i.e., delaying of operations
such as memory accesses that cause secret-dependent hardware resource usages. Therefore, a major
design objective is to execute those unsafe operations in a safe manner rather than simply delaying
them.

Speculative Data-Oblivious Execution [19], or SDO, extends STT for this design objective with-
out sacrificing the security claim of STT. When a speculative secret is about to be processed by
unsafe execution units which have data-dependent behavior, SDO changes the behavior of those
execution units from data-dependent to data-oblivious.

To illustrate how such transformation is conducted, consider float-point operations on mod-
ern processors. Floating-point operations typically have operand-dependent behavior: for normal
operand values, the operations are executed by a fast hardware floating-point unit, resulting in
a fixed, short latency. When the operand is exceptionally small (which is usually referred to as
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subnormal), the instruction’s execution requires microcode assist and takes significantly longer [1].
Consequently, the execution of floating-point operations creates two execution equivalence classes:
slow and fast, and by inferring which equivalence class an operation belongs to by, e.g., monitoring
program runtime, information about the operand values is revealed.

To achieve data obliviousness, one can perform all execution equivalence classes, such as exe-
cuting the operation with both FPU and microcode assist in the example above. Although this
idea achieves security from data obliviousness, as the hardware usage is not independent of the
secret input, it is highly inefficient since we must wait for the result of the slowest (e.g., subnormal)
mode completes, to hide which mode was actually needed.

The key insight of SDO in addressing this issue is to predict that one (or several) equivalence
class is valid and only execute the operation with the predicted class. When the prediction is
accurate enough, the hardware will execute the unsafe operation efficiently and generate valid
outputs in most cases. However, an obvious pitfall with this approach is the prediction and the
produced output might reveal private information. SDO avoids this by inheriting the security
mechanisms from STT, such as hardware taint tracking, and protection against implicit channels.
STT’s implicit channel protection ensures hardware prediction and resolution never depend on
speculative secrets, thus also covering the new prediction introduced by SDO. STT’s taint tracking
property propagates the taint from the secret input to the output of the predicted execution
equivalence class, therefore even the invalid output (due to predicting the wrong equivalence class)
cannot be leaked via dependent instructions.

The above approach summarizes SDO, and can be generalized across different instruction types
beyond just float-point operations. Importantly, we propose an SDO mechanism for memory loads,
since most performance overhead in blocking speculative execution attacks is due to loads [16, 20].
The SDO mechanism for loads includes a new speculative data-oblivious load operation including
multiple equivalence classes and their implementations, and a novel location predictor for predicting
the equivalence class for a given load instruction. Overall, SDO improves STT’s performance by an
average of 36% to 55%, depending on the microarchitecture and attack model without weakening
STT’s security guarantees.

3 Ongoing Works

3.1 NightVision

In reality, most micro-architectural side channels have no hardware fixes. Instead, people rely on
software-based mitigations that replace code patterns vulnerable to existing side channels with
new code structures. However, the software strategy is only based on the knowledge of the existing
side-channel attack, which is only related to certain behaviors of a subset of hardware structures.
Consequently, software mitigations for side channels usually result in a cat-and-mouse game, in
which new side-channel vulnerabilities constantly emerge and new software transformations are
proposed on top of existing ones for mitigating the new vulnerability.

As an example, consider an important class of side-channel attacks that leaks the secret-
dependent program control flow, such as the branch direction. There has been significant work to
mitigate these attacks individually, such as through branch balancing [12], control-flow random-
ization [3], and instruction aligning [13]. The end result is that every proposed side-channel attack
could be properly mitigated at the software level without actually eliminating secret-dependent
control flow (which is preferred for performance reasons).

We aim to show that pure software mitigations without assistance from the hardware are in-
herently incapable of providing robust security guarantees. To demonstrate this, we visit Branch
Target Buffer (BTB), an important hardware structure used by modern high-performance proces-
sors for accurate branch prediction. This structure has been studied by prior side-channel attacks
for leaking control-flow information about branches. Through careful reverse-engineering of BTB
in existing Intel processors, we identify previously overlooked, yet important BTB features that
reveal the control-flow information about arbitrary instruction types aside from just branches.

With this finding, we develop an attack framework named NightVision, which is capable of re-
covering the dynamic PC of every executed instruction by the victim. The attack basically works
as a Prime+Probe attack on BTB, with complimentary mechanisms to shorten the victim’s exe-
cution in between the Prime and the Probe for achieving fine-grained measurement of the victim’s
dynamic PCs. Since a full dynamic PC trace essentially represents the entire program control
flow, any mitigation that does not eliminate secret-dependent control flow becomes susceptible
to NightVision by default. NightVision, therefore, shows how important it is to provide compre-
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hensive hardware-based side-channel defenses rather than relying on ad hoc software changes in
reaction to each individual attack.

NightVision’s capability of recovering the program’s PC pattern can be utilized in different
attack scenarios. First, we use NightVision to attack existing cryptographic implementations which
contain secret-dependent control flow. Second, in response to the recent effort in confidential cloud
computing that hides the program code for hindering attacks [17], NightVision can deduce the
exact PC of every victim dynamic instruction and employ binary fingerprinting techniques to
reverse-engineer private programs with the extracted PC trace.

3.2 LoadPrime+StoreProbe

Mitigating micro-architectural side-channel attacks is extremely challenging given the numerous
hardware units producing data-dependent state changes which eventually lead to side channels.
However, from the attacker’s perspective, the hardware state (such as cache occupation) is inacces-
sible, thus a successful side-channel attack must rely on certain mechanisms to transform secret-
dependent hardware state changes into software state changes. The most widely-used mechanism
in existing side-channel research is hardware performance counters, especially hardware timers,
which are commonly used for measuring the duration of a given piece of code. Other mechanisms
such as power [8] and temperature [5] measurement also reveal information about the hardware
activities but are far more coarse-grained and noisy than timers.

Correspondingly, people consider restricting access to high-precision timers as a simple yet com-
prehensive mitigation against side channels [11], since the lack of other reliable methods to convert
hardware state changes to software state changes. However, there could still be unexplored primi-
tives, or new primitives that appear in the future that can achieve this hardware-to-software state
conversion. In our attacker called LoadPrime+StoreProbe, we identify such a primitive in existing
Apple M-series processors, and thus claim that mitigating side-channel attacks with comprehensive,
hardware-based mechanisms is the more reliable approach and provides real security guarantees.

LoadPrime+StoreProbe exploits Apple M-series processors’ implementation of load-linked/store-
conditional instructions to present a timer-less cache side-channel attack, which is equally pow-
erful as the traditional timer-based cache side-channel attack [10]. Load-linked/store-conditional
(LL/SC) instructions are commonly used for implementing atomic operations such as read-modify-
write, where LL and SC are applied to the same address. For a pair of LL/SC accessing the same
address, the SC fails when there exist any updates (from the current thread or other threads) to
the address. Hardware thus uses metadata to label the address that has been LL-ed and is waiting
for the corresponding SC. This metadata is normally piggybacked to the cache coherence state in
most commodity processors such as ARM.

We made a key observation that the cache coherence state can be invalidated when data is
evicted from the cache, in which SC might conservatively fail. We tested Apple M1 and M2
processors and verified in those processors, SC indeed returns fails when the previous LL-ed data
is evicted from L1 data cache. Since cache eviction can be caused by other processes sharing the
same processor, this enables an attacker to observe the cache access pattern of other processes
from the return state of SC.

With this observation, we aim to develop the first cross-core cache side-channel attack that
relies on LL/SC instead of high-precision timers. Our attack starts by constructing an eviction
set for a target victim address. The attacker accesses the first element in the eviction set using
LL, and traverses the rest of the set such that the element is in the LRU state in the shared
cache. In this way, when the victim performs an access to the victim address, the load-linked
data will be evicted, and a subsequent SC will return fail. Using LoadPrime+StoreProbe, we will
construct Proof-of-Concept attacks such as constructing a covert channel between two processes,
and attacking cryptographic implementations such as T-Table AES. If time permits, we will also
attempt more realistic settings such as cross-browser-sandboxes or cross-VMs.
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