
Creating Foundations
for Secure
Microarchitectures
With Data-Oblivious
ISA Extensions

Jiyong Yu
University of Illinois at Urbana–Champaign

Lucas Hsiung
SciFive

Mohamad El Hajj and Christopher W. Fletcher
University of Illinois at Urbana–Champaign

Abstract—It is not possible towritemicroarchitectural sidechannel-freecodeon

commercial processors today. Evenwhenwe try, the resultingcode is lowperformance.This

article’s goal is to layan ISA-level foundation, calledaData-Oblivious ISA (OISA) extension,

to address theseproblems.Thekey ideawithanOISA is toexplicitly butabstractly specify

security policy, so that thepolicycanbedecoupled fromthemicroarchitectureandeven the

threatmodel. Analogous toa traditional ISA, this enablesanOISA toserveasaportable

security-centric abstraction for softwarewhile enablingsecurity-aware implementationand

optimizationflexibility forhardware.Thearticle startsbygivingadeep-dive inOISAprinciples

and formal definitionsunderpinningOISAsecurity.WealsoprovideaconcreteOISAbuilt on

topofRISC-V, an implementationprototypeon theRISC-VBOOMmicroarchitecture, a formal

analysisandsecurity argument, andfinally extensiveperformanceevaluationona rangeof

data-obliviousbenchmarks.

Digital Object Identifier 10.1109/MM.2020.2985366

Date of publication 6 April 2020; date of current version 22

May 2020.

Theme Article: Top PicksTheme Article: Top Picks

May/June 2020 Published by the IEEE Computer Society 0272-1732 � 2020 IEEE 99
Authorized licensed use limited to: University of Illinois. Downloaded on December 11,2022 at 23:57:13 UTC from IEEE Xplore. Restrictions apply.

& A, ARGUABLY THE, central problem in secure

computer architecture today is how to reason

about security amid the sea of different micro-

architectural side channel attacks. The prevailing

approach to stop these attacks is to

block leakage stemming from one

hardware structure at a time. For

example, by partitioning or ran-

domizing the cache layout, we

block (or at least aggravate) cache

timing attacks. Yet, many hardware

structures have been shown to leak

secrets—from the cache to the

branch predictors,5 speculative

execution,8 port contention,1 arithmetic unit tim-

ing,2 etc. Given themany avenues to leak a secret,

it is paramount to explore holistic defenses that

provide a basis to block leakage through all hard-

ware structures.

In this direction, the article proposes ISA

design principles for what we call data-oblivious

ISAs (OISAs). The key idea with an OISA is to

explicitly but abstractly specify security policy,

so that the policy can be decoupled from the

microarchitecture and even the threat model.

Analogous to a traditional ISA, this enables an

OISA to serve as a portable security-centric

abstraction for software while enabling security-

aware implementation and optimization flexibil-

ity for hardware.

The OISA proposed in the article annotates

what data is confidential and what instruction

operands are safe. Inspired by information flow

policies (in particular, the classic policy High Z
Low), the hardware dynamically enforces that

confidential data is never passed to unsafe oper-

ands, i.e., Confidential data Z Unsafe operands.

Informally, “safe” in the article means “does not

create amicroarchitectural side channel as a func-

tion of the operand” (we also provide formal defi-

nitions), but other notions of safety can be

retrofitted into the implementation without

changing the OISA or the programs that sit on

top of it.

OISAs enable high security, portability, and

efficiency. Consider a simple example OISA

instruction: a load with a safe address operand.

Security-wise and portability-wise, the OISA

guarantees that when the load executes, the

address will not leak through microarchitectural

side channels. Depending on the microarchitec-

ture, this may require closing side channels

through the cache, translation lookaside buffer

(TLB), etc. That is, security is not tied to closing

a specific side channel and the

programmer works with a simple,

portable guarantee across micro-

architectures. On the efficiency

side, each microarchitecture can

choose how to implement the

safe load operation in whatever

way maximizes performance

while preserving security (e.g.,

by microcoding the load into sim-

pler safe operations,2 or using hardware parti-

tioning,11 or using cryptographic techniques9).

Safe loads are just one example. More gener-

ally, deciding which instruction operands to des-

ignate as safe opens a new, rich ISA design space

which trades-off performance and hardware

complexity.

Beyond formulating design principles for

OISAs, the article proposes a concrete OISA

extension built on top of RISC-V, implements

(and open sources) that OISA extension on the

BOOM out-of-order (OoO) speculative RISC-V

core,3 and provides a formal analysis showing

how the OISA provides a basis to achieve nonin-

terference (“zero privacy leakage”) on an

abstract OoO speculative machine. Crucially, the

security analysis and principles are robust to

modern attacks. Case in point, the article’s formal

analysis shows how the OISA soundly defeats

speculative execution attacks (such as Spectre8)

without introducing special case reasoning.

To our knowledge, this is the first proposal

that provides a basis to block all traditional side

channel and speculative execution attacks on

commercial-class microarchitectures.

MOTIVATION: SECURE AND
EFFICIENT DATA-OBLIVIOUS
PROGRAMMING

The OISA project came about by asking the

following question: Is it possible today to write

microarchitectural side channel-free programs

on modern microarchitectures?

The answer is no. Consider the most conser-

vative approach used by practitioners, called

To our knowledge, this

is the first proposal that

provides a basis to

block all traditional side

channel and specula-

tive execution attacks

on commercial-class

microarchitectures.

Top Picks

100 IEEE Micro

Authorized licensed use limited to: University of Illinois. Downloaded on December 11,2022 at 23:57:13 UTC from IEEE Xplore. Restrictions apply.

data-oblivious programming.� In a nutshell, a

data-oblivious program is one whose hardware

resource usage is independent of the program’s

inputs. To write such programs, the guidelines

are to use only simple instructions, or otherwise

ensure that complex instructions do not receive

Confidential data as operands. For example, sim-

ple bitwise math is allowed, but memory

operations/branches with Confidential data as

addresses/predicates are not (out of fear of, e.g.,

cache-based/control flow-related side channels).

Despite being extremely conservative, the

abovementioned guidelines fail in light of ISA-

invisible microarchitecture-specific optimiza-

tions. For example, on one microarchitecture, a

simple integer addition might be safe (e.g., imple-

mented as a single-cycle operation whose timing

is independent of its inputs) while on another it

might be unsafe (e.g., implemented as a bit-serial

operation that skips runs of 0s or zeros to save

time). The article describes 11 like optimizations,

which have been proposed in the literature, or

are otherwise known to be implemented already,

which break data-oblivious program security.

These include data-in-use optimizations (such as

data-dependent arithmetic) and data-at-rest opti-

mizations (such as cache compression).

In particular, the article points out for the

first time that speculative execution breaks data-

oblivious program security, by steering execu-

tion so that Confidential data is consumed by an

instruction whose execution can leak privacy.

This is nontrivial to see for realistic programs,

given the conservative guidelines used to write

data-oblivious code. For example, consider data-

oblivious decryption

1 for (i = 0; i < NUM_ROUNDS; i++)
2 state = OblDecryptRound

(state, rkey [i])
3 leak(state)

That is, perform a fixed number of decryption

rounds, where each round works on a part of the

secret key (rkey) and incrementally updates the

round state (state). Here, we assume that

OblDecryptRound, the round logic, is data obliv-

ious. leak() is a proxy for an instruction that

reveals its argument over a microarchitectural

side channel.

This program is legal data-oblivious code:

The branch outcome in each iteration is public

information, the round logic is data oblivious,

and only the plaintext is meant to be revealed

after decryption is complete. Yet, unwanted pri-

vacy leaks because benign mispredictions can

cause the round logic to exit early. In this exam-

ple, an early mispredict of “not taken” allows the

attacker to see state before all rounds complete,

which allows it to perform cryptanalysis and

recover the secret key rkey.

Core Issue: No Abstraction for Security

To summarize, data-oblivious programming

today is insecure and slow. It is insecure because

of ISA-invisible microarchitecture-specific opti-

mizations. It is slow because, out of fear of leak-

ing privacy, programmers are forced into using

only the simplest of instructions.

The article sets out to address these issues

by introducing new ISA-level abstractions

for reasoning about security and enabling higher

performance. A new ISA abstraction addresses

the security problem by defining how instruc-

tions leak privacy across all compliant microarch-

itectures. It further enables higher performance

by allowing data-oblivious programs to take

advantage of higher performance instructions, as

long as those instructions are deemed safe by

the ISA, and gives microarchitects the ability to

optimize those instructions subject to the ISA-

prescribed security policies.

FORMAL DEFINITIONS FOR
MICROARCHITECTURAL SIDE
CHANNELS

To start, the article develops a security defi-

nition for microarchitectural side channel-free

execution. There are two challenges. First, how

to write the definition to account for any possi-

ble microarchitectural side channel. Second,

how to write the definition so that it sheds

insight on which instructions are “safe” from a

microarchitectural side channel perspective.

To define privacy, we adopt a trace-based

indistinguishability style definition inspired by

the oblivious RAM (ORAM)7 literature. We

�
Data-oblivious programming goes by several other names, e.g., “constant-

time programming” and “programming in the circuit abstraction,” depending

on the community.

May/June 2020 101
Authorized licensed use limited to: University of Illinois. Downloaded on December 11,2022 at 23:57:13 UTC from IEEE Xplore. Restrictions apply.

consider a program �; which takes public data x

and confidential data y as input. That program’s

execution trace, on a microarchitecture mArch,

i.e., “all the atoms in the universe that are per-

turbed as a result of running �ðx; yÞ on mArch,” is

denoted mArchð�ðx; yÞÞ. The subset of this trace

that the attacker can see (called the view) is

denoted ViewðmArchð�ðx; yÞÞÞ. For privacy, we

require that the information in the View does

not depend on confidential information, i.e., that

ViewðmArchð�ðx; yÞÞÞ ’ ViewðmArchð�ðx; y0ÞÞÞ for

all confidential data y and y0. In this setting, ’
informally means “equal, given the capabilities

of any computationally bounded adversary.” For

example, in ORAM schemes the view is the

“memory access pattern” and ORAM seeks to

make the memory access pattern independent of

confidential data.

Next, we must define a view that captures any

possible microarchitectural side channel that an

arbitrary software-based attacker can monitor.

This is nontrivial as the attacker can monitor

many aspects of the program’s execution. For

example, its execution time, use of the cache,

arithmetic units, etc. The article makes a key

observation that all of these leakages can be mod-

eled as confidential data-dependent changes in the

program’s hardware resource usage over time. For

instance, both arithmetic units and cache sets

are hardware resources and the fact that they

are used at confidential data-dependent times is

the crux of the attacks.

Then, the question is how to determine

whether a hardware resource is currently being

“used” by a program. (Note that whether a hard-

ware resource is being “used” is independent of

the logic values currently stored in that struc-

ture.) For this, we rely on an explicit gate-level

information flow abstraction similar to GLIFT.10

Figure 1 shows an example using an arithmetic

logic unit (ALU) with operand-independent and

then operand-dependent timing.

First assume a single-cycle ALU (see Figure 1,

Case 1). Suppose the input arrives and is stored in

the input latches at the rising edge of cycle 1.

Using terminology from information flow, we say

the input latch is tainted in cycle 1. Now, regard-

less of the logic values of the input, the same

latches are tainted in each cycle thereafter. That

is, the output latches are tainted in cycle 2, etc.

Becausewhich latches are tainted when is indepen-

dent of the operands, we say the single-cycle ALU

does not form amicroarchitectural side channel.

Next assume an ALU with operand-dependent

timing (see Figure 1, Case 2). For example, a mul-

tiply operation that takes one or two cycles,

depending on whether an operand is 0. In this

case, depending on the input, the output latch is

either tainted in cycle 2 or cycle 3. Because

which latches are tainted when is dependent on

the operands, we say this ALU can form a micro-

architectural side channel.

Putting everything together, we model the

processor as a state machine composed of com-

binational logic and latches.** The subset of

latches that store the Confidential input are

denoted tainted at the start. Then, the View out-

puts a trace that indicates which subset of

latches are tainted in each cycle. That is, hard-

ware resource usage as a function of time. If the

microarchitecture ensures that the View is inde-

pendent of Confidential data, the microarchitec-

ture does not leak privacy. Conversely, if the

definition is not satisfied, we can pinpoint which

Figure 1. Changes in resource usage, as a function of data, create microarchitectural side channels. If a

latch is shaded in a given clock cycle, then it means that there is (explicit) information flow from the operands

to that latch in that cycle. Assume operands A and B are two sets of distinct data values, meant to induce

different ALU timings.

**W.l.o.g., we treat any state element (flip-flop, SRAM cell, etc.) as a latch.

Top Picks

102 IEEE Micro

Authorized licensed use limited to: University of Illinois. Downloaded on December 11,2022 at 23:57:13 UTC from IEEE Xplore. Restrictions apply.

instruction caused the problem by looking at

where the Views diverged. (To note, the article

defines taint propagation in a nonstandard way

to model only explicit information flows. This

prevents taint explosion, which would render

the definition not useful. Implicit information

flows are modeled by quantifying over all y0.)

PRINCIPLES OF OISA DESIGN
The design principles for OISAs are twofold.

First, the OISA should expose security guaran-

tees in a microarchitecture-independent way.

That is, programs written using an OISA should

maintain the same security guarantees across all

OISA-enabled microarchitectures. Second, OISAs

should not preclude modern hardware perfor-

mance optimizations, except when those optimi-

zations have a chance to leak privacy.

To address these goals, the OISA abstraction

proposed in the article has two parts. First, the

OISA labels data to be confidential/public, to

capture whether that data is a function of user

secrets (i.e., the sensitive program inputs from

the “Formal Definitions for Microarchitectural

Side Channels” section). Second, the OISA speci-

fies, for each instruction, whether each instruc-

tion operand is safe or unsafe.

Finally, compliant microarchitectures must

monitor and take different actions based on what

data is consumed by what instruction operands

at runtime. Specifically, hardware must enforce

the following rules (shown in Figure 2).

� (Confidential Z Unsafe) When confidential

data is presented to an unsafe operand: The

hardware must delay that instruction’s exe-

cution until it is nonspeculative. If the rule

still applies when the instruction is nonspec-

ulative, the program terminates with a fault

(as continuing would constitute an informa-

tion leak).

� (Confidential ! Safe) When Confidential

data is sent to a safe operand: The hardware

designer must add mechanisms to enforce

the security definition given that instruction’s

execution (see the “Formal Definitions for

Microarchitectural Side Channels” section),

for a specified view. For example, by disabling

performance optimizations, scrubbing side

effects and masking exceptions that occur as

a function of confidential operands.

� (Public ! Safe/Unsafe) When public data is

sent to safe or unsafe operands, no special

treatment is needed and execution can pro-

ceed without protection.

Despite these rules’ simplicity, they provide

both security and efficiency benefits. As we will

see in the “Formal Analysis,” they provide a uni-

form handling for both traditional- and specula-

tive-execution-based attacks.8 Case in point, the

only mention of speculation is a detail in the rule

for Confidential Z Unsafe, where we say such an

information flow delays the instruction’s execu-

tion until it is nonspeculative. This removes

false-positive violations due to benign misspecu-

lations. At the same time, the rules enable block-

ing attacks with low overhead. Case in point, the

rules encode some intuitive optimizations such

as “Public data does not need protection” and “it

is safe to compute on confidential data with safe

instructions.” The only situation where instruc-

tion execution is impeded is if confidential data

is consumed by an unsafe operand.y

Key Idea: Abstract security policies facilitate pro-

gramming simplicity, implementation flexibility,

and performance optimizations. Specifying instruc-

tion operand security policy abstractly, i.e., as

safe/unsafe, provides significant flexibility to both

the ISA and hardware designer while simplifying

programmer-level reasoning about security. At

the ISA level, an ISA designer can decide which

instructions are sufficiently important to warrant

safe operands. These choices should be made

carefully: On one hand, safe operands impose a

burden on hardware designers as the processor

must support mechanisms to uphold security viz.,

the “Formal Definitions for Microarchitectural

Figure 2. Protection policies, checked before each

instruction executes.

y
This principle directly inspired our follow-on work to block, specifically,

speculative execution attacks.12

May/June 2020 103
Authorized licensed use limited to: University of Illinois. Downloaded on December 11,2022 at 23:57:13 UTC from IEEE Xplore. Restrictions apply.

Side Channels” section for those operands. On the

other hand, safe operands donot specify an imple-

mentation strategy. Hardware designers can

implement a given operation using simpler data-

oblivious instructions2 hardware partitioning11 or

cryptographic techniques9—depending on what

is efficient given public parameters and the

specific microarchitecture. In either case, pro-

grammers work with a simple guarantee: Confi-

dential values will not be at risk when consumed

by safe operands, and dynamic execution will be

terminated when violations to this policy are

detected.

Information flow policy and implementation.

The abovementioned OISA framework describes a

relatively simple security lattice (similar to {High,

Lowg),4 policy (HighZ Low) and information flow

propagation rule (as written, data should be

marked Confidential if its value is interferrent with

the program’s Confidential inputs, which implies a

taint algebra similar to GLIFT10). This reflects the

article’s goal: to provide a comprehensive, but

simple, privacy guarantee for data-oblivious pro-

gramming while granting implementation flexibil-

ity to tradeoff design cost and performance. Given

other use cases these parameters, and how they

are concretely enforced by an implementation,

can be changed for a family of OISAs, a particular

OISA, or amicroarchitecture that implements that

OISA. For example, to support richer security

lattices.6

DESIGN OF A CONCRETE OISA
With the principles in the “Principles for OISA

Design,” section, we now propose a baseline con-

crete OISA that can be easily implemented on top

of common existing ISAs (e.g.�86, ARM, RISC-V).

Figure 3 highlights the instructions included

in the OISA, and which operands are safe/unsafe.

Programmers that write data-oblivious code

will recognize this as a formalization of the

guidelines used by data-oblivious programs

today (see the “Core Issue: No Abstraction for

Security”) section. Arithmetic represents all

binary arithmetic operations with safe input

operands. Classify promotes its operand from

public to confidential. Declassify is opposite to

classify, which demotes its operand from confi-

dential to public. Branch performs a conditional

branch, but is only allowed to specify a public

destination or check a public predicate. Load and

store are only permitted to take public addresses.

An important detail is that since declassify has

the potential to make previously protected data

vulnerable, the OISA requires that the declassify

instruction be verified as corresponding to pro-

gram semantics. For example, on a speculative

microarchitecture, this would entail delaying

such an instruction until it is nonspeculative.

Extension: Memory obliviousness via safe-

address loads. A common bottleneck in existing

data-oblivious code is the inability to use confi-

dential data as a load address. Therefore, we pro-

pose a new set of instructions (an oblivious-

memory extension) that enablememory-oblivious

computation.9 Given the OISA design principles,

enabling memory-oblivious instructions is con-

ceptually simple. Instead of emulating memory

obliviousness with dummy memory operations,

we designate new load/store instructions whose

address operand is safe. This gives hardware

designers the ability to build secure and efficient

implementations, e.g., using partitioning11 or

oblivious RAM,7 for that specific operation.

Load instructions with safe address operands

are just one example of how to accelerate secure

computation with an OISA, and the article leaves

extending our concrete OISA with additional safe

instructions as future work. A key insight that

motivates this direction is that many data-oblivi-

ous codes share common kernels (e.g., sorting)

that become performance bottlenecks because

the only available safe operations are simple

instructions. By encapsulating these larger oper-

ations into new instructions with safe operands,

a future OISA can potentially achieve constant

factor or even asymptotic performance improve-

ments. For example, a sort implemented data

obliviously with simple safe instructions may

cost Oðn � log 2nÞ operations if implemented as a

Figure 3. Data-oblivious ISA policy when data is

passed to an instruction operand.

Top Picks

104 IEEE Micro

Authorized licensed use limited to: University of Illinois. Downloaded on December 11,2022 at 23:57:13 UTC from IEEE Xplore. Restrictions apply.

bitonic sort. On the other hand, if sort is speci-

fied as a single safe instruction in the OISA, an

implementation based on hardware partitioning

can achieve Oðn � lognÞ time if implemented as a

constant-time merge sort.

HARDWARE PROTOTYPE ON RISC-V
BOOM

We prototype all hardware changes needed

to support our OISA on top of the RISC-V BOOM

processor (for “Berkeley OoO Machine”).3

BOOM is the most sophisticated open RISC-V

processor, featuring modern performance opti-

mizations such as speculative and OoO execu-

tion, and is similar to commercial machines that

run data-oblivious code today.

Microarchitectural changes to support the

OISA are shown in Figure 4. The main changes are

logic at instruction issue/execute to enforce the

rules from the “Principles of OISADesign” section,

storage/logic to implement the oblivious-memory

extension, and logic to track and denote data as

confidential/public. For the latter, we implement a

hardware information flow tracking mechanism

similar to hardware dynamic information flow

tracking, but capable of checking and updating

whether data is confidential/public (the data’s

label) at any stage in the pipeline.

FORMAL ANALYSIS
In parallel to our hardware prototype, we

develop a formal analysis that models an abstract

BOOM-class processor (OoO, speculative, super-

scalar), and describe how to map the abstract

BOOM to our concrete BOOMprototype. Through

this model, we prove that the OISA provides a

basis to satisfy strong security definitions such as

those we defined in the “Formal Definitions for

Microarchitectural Side Channels” section. Our

security analysis is general, and applies given any

implementation of several important processor

structures (e.g., it models the branch predictor as

an arbitrary function that takes previous branch

resolutions as input).

Importantly, we are able to prove security

while allowing high-performance hardware opti-

mizations (e.g., OoO, speculative execution) to

remain enabled in the common case and without

ever requiring hardware flushes to structures

such as the cache or branch predictors.

Security intuition. Informally, to argue secu-

rity, we need to show the following.

a) Each instruction’s resource usage/side-

effects are independent of Confidential

data.

b) The sequence of instructions that are exe-

cuted, i.e., the processor program counter

(PC), is independent of Confidential data.z

Condition (a) follows by definition by apply-

ing the rules in Figure 2 to each instruction as

it executes. A more subtle point is that condi-

tion (b) also follows from applying the same

rules. To see why, first consider a simple unpi-

pelined, in-order processor with no specula-

tion. In this case, it is clear condition (b) holds

because the only instruction type from Figure 3

that changes the PC as a function of data is a

branch, and the OISA requires that the branch

predicate and target be Public data. What hap-

pens when we consider more advanced pipe-

lines, e.g., with prediction and speculation? In

that case, microarchitectural state outside of

program semantics, e.g., the branch predictor

state, influences the PC. To extend our security

argument to these machines, we must extend

what we mean by “resource usage/side-effect”

to include these structures. Then, using induc-

tion, one can show that if conditions (a) and

(b) hold up to fetching the ith instruction, the

branch predictor state when fetching the

Figure 4.Microarchitectural changes needed to

support the OISA from the “Design of A Concrete

OISA” section (including the oblivious-memory

extension, denoted “omp”). Label stations check and

enforce the transition rules from Figure 2.

z
Similar requirements on “not tainting” the PC also govern prior work.10

May/June 2020 105
Authorized licensed use limited to: University of Illinois. Downloaded on December 11,2022 at 23:57:13 UTC from IEEE Xplore. Restrictions apply.

iþ 1th instruction is independent of Confiden-

tial data, and security follows.x

Example: Security against speculative execu-

tion attacks. The abovementioned reasoning

shows how OISAs enable security against both

nonspeculative and speculative attacks. Con-

sider the example speculative execution

attack on data-oblivious decryption from

the “Motivation: Secure and Efficient Data-

oblivious Programming” section. This attack

does not go through when using an OISA by

invoking aforementioned conditions (a) and

(b). That the branch predictor misspeculates

and executes leak() prematurely is not a func-

tion of Confidential data due to condition (b).

Furthermore, when leak() executes, it will be

unconditionally stopped by the Confidential

data Z Unsafe operands rule due to condition

(a). Extending the analysis to attacks like Spec-

tre,8 where the branch predictor is inten-

tionally mistrained, reuses the same logic.

That is, if conditions (a) and (b) hold, then the

attacker’s strategy for how to mistrain the

branch predictor cannot be a function of Confi-

dential data because the program has not

leaked Confidential data up to this point. In

that case, intentional mistraining looks the

same to the analysis as accidental misspecula-

tion, and security follows.

EVALUATION
We evaluate OISAs in terms of hardware area

and performance over a range of existing data-

oblivious programs (including linear algebra,

data structures, and graph traversal). Area-wise,

our proposal takes <5% the area of the unmodi-

fied BOOM processor. Performance-wise, the

OISA and hardware implementation provides

an 8:8�/1:7� speedup on small/large datasets,

respectively, relative to data-oblivious code run-

ning on commodity machines (and with the

security and portability benefits stated before).

We also show case studies, where the OISA

speeds up constant-time AES by 4:4� and the

memory oblivious ZeroTrace9 library by 4:6� to

several orders of magnitude, depending on

parameters.

We have open-sourced our prototype design

on the RISC-V BOOM processor at https://github.

com/cwfletcher/oisa.

DISCUSSION AND FUTURE
DIRECTIONS

OISAs can be extended in numerous direc-

tions, in particular as a way to compose exist-

ing hardware/software defensive mechanisms

and as a novel backend for the data-oblivious

stack.

Simplifying and Composing the Hardware

Trusted Computing Base (TCB)

A major impediment to progress is that many

hardware structures create side channels, and it

is not clear whether the program is “secure”

until all channels are blocked. OISAs dramati-

cally simplify this problem, enabling a new incre-

mental methodology for designing secure

hardware and software.

In theirmost basic deployment, an OISAmight

opt to only support very basic safe instructions

(e.g., bitwise operations and basic arithmetic).

Such anOISA can likely be implementedwithmin-

imal changes to modern processors and already

improves the state of security today. For exam-

ple, by increasing our confidence that conserva-

tively-written codes such as constant-time codes

are really “constant time.”

Beyond this basic deployment, however,

OISAs provide a way for computer architects

to plug-and-play their high-performance

“point” defenses in a compositional way. For

example, a safe load can be implemented by

previously proposed partitioned or random-

ized cache architectures.11 Importantly, archi-

tects need only worry about how to implement

the safe load. The generic OISA rules, e.g., Con-

fidential data Z Unsafe operands, take care of

the rest.

Composing With the Data-Oblivious Stack

Beyond writing side channel-free code for

today’s hardware, there is a rich literature in

the applied cryptography community—ranging

from algorithm/data structure design to lan-

guage and compiler support—for performing

secure multiparty and encrypted computation.

x
This idea to keep the predictors a function of Public data directly inspired

the mechanism to block “implicit channels” in our follow-on work.12

Top Picks

106 IEEE Micro

Authorized licensed use limited to: University of Illinois. Downloaded on December 11,2022 at 23:57:13 UTC from IEEE Xplore. Restrictions apply.

https://github.com/cwfletcher/oisa
https://github.com/cwfletcher/oisa

Wemake a key observation that the underlying

programming abstraction assumed for those

works is the same abstraction provided by an

OISA. For example, a homomorphic encryption

operation is akin to a safe instruction, just using a

different implementation suitable for a different

threat model. This enables a new, large-scale

research agenda to port insights and advances

made in the applied cryptography community to/

from the microarchitectural side channel commu-

nity. For example, we can enable high-level pro-

gramming abstractions for writing OISA-secure

code by adding a new OISA backend to existing

data-oblivious compiler frameworks. At the same

time, the notion of safe instructions provides a

new theory to explore in applied cryptography. In

particular, algorithm design in encrypted compu-

tation assumes only extremely simple safe opera-

tions (e.g., bit add or multiply). With an OISA,

however, we can choose which operations sup-

port safe operands, and co-design algorithmswith

this inmind to improve performance.

& REFERENCES

1. A. C. Aldaya, B. B. Brumley, S. U. Hassan, C. P.

Garc�ıa, and N. Tuveri, “Port contention for fun and

profit,” in Proc. IEEE Symp. Secur. Privacy, 2019,

pp. 870–887.

2. M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S.

Lerner, and H. Shacham, “On subnormal floating point

and abnormal timing,” in Proc. IEEE Symp. Secur.

Privacy, 2015, pp. 623–639.

3. C. Celio, P.-F. Chiu, B. Nikolic, D. A. Patterson, and K.

Asanovi�c, “BOOM v2: An open-source out-of-order

RISC-V core,” Tech. Rep. UCB/EECS-2017-157, EECS

Dept., Univ. California, Berkeley, CA, USA, 2017.

4. D. E. Denning, “A lattice model of secure information

flow,” Commun. ACM, vol. 19, pp. 236–243, May 1976.

5. D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and

D. Ponomarev, “BranchScope: A new side-channel

attack on directional branch predictor,” in Proc. 23rd

Int. Conf. Archit. Support Program. Lang. Oper. Syst,

2018, pp. 693–707.

6. A. Ferraiuolo, M. Zhao, A. C. Myers, and G. E. Suh,

“HyperFlow: A processor architecture for

nonmalleable, timing-safe information flow security,” in

Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,

2018, pp. 1583–1600.

7. O. Goldreich and R. Ostrovsky, “Software protection

and simulation on oblivious rams,” J. ACM, vol. 43,

pp. 431–473, May 1996.

8. P. Kocher et al., “Spectre attacks: Exploiting

speculative execution,” in Proc. IEEE Symp. Secur.

Privacy, 2019, pp. 1–19.

9. S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace:

Oblivious memory primitives from Intel SGX,” in Proc.

Netw. Distrib. Syst. Secur. Symp., San Diego, CA,

USA, Feb. 18–21, 2018. Available: http://dx.doi.org/

10.14722/ndss.2018.23239

10. M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T.

Chong, and T. Sherwood, “Complete information flow

tracking from the gates up,” in Proc. 14th Int. Conf.

Archit. Support Program. Lang. Oper. Syst., 2009,

pp. 109–120.

11. Z. Wang and R. B. Lee, “New cache designs for

thwarting software cache-based side channel

attacks,” in Proc. 34th Annu. Int. Symp. Comput.

Archit., 2007, pp. 494–505.

12. J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and

C. Fletcher, “Speculative taint tracking (STT): A

comprehensive protection for speculatively accessed

data,” in Proc. 52nd Annu. IEEE/ACM Int. Symp.

Microarchit., 2019, pp. 954–968.

Jiyong Yu is currently working toward the Ph.D.

degree at theUniversity of Illinois atUrbana–Champaign.

His research interests are in processor security. Contact

himat jiyongy2@illinois.edu.

Lucas Hsiung received the B.S. degree from the

University of Illinois at Urbana–Champaign in 2019

and now works as a Security Verification Engineer at

SciFive. Contact him at lucas.hsiung@sifive.com.

Mohamad El Hajj is currently working toward the

M.S. degree at the University of Illinois at Urbana–

Champaign with research interests in hardware

security. Contact him at melhajj2@illinois.edu.

Christopher W. Fletcher is an Assistant Profes-

sor in computer science at the University of Illinois at

Urbana–Champaign. He has interests ranging from

computer architecture to security to high-performance

computing (ranging from theory to practice, algorithm

to software to hardware). Fletcher received the Ph.D.

degree from Massachusetts Institute of Technology in

2016. Contact him at cwfletch@illinois.edu.

May/June 2020 107
Authorized licensed use limited to: University of Illinois. Downloaded on December 11,2022 at 23:57:13 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.14722/ndss.2018.23239
http://dx.doi.org/10.14722/ndss.2018.23239
mailto:jiyongy2@illinois.edu
mailto:lucas.hsiung@sifive.com
mailto:cwfletch@illinois.edu

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

