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Introduction

Microarchitecture side channel attacks

« Huge privacy threat
« Fundamental problem:

Secret data impacts HW resource usage

« Various attacks proposed for different HW resources
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Load addrl

if (secret)
a = *(addrl);
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Figure 1: Attacker monitors cache pressure to learn secret

Difficulty in solving this type of attacks:
No contract between hardware and software
« Software doesn’t know what hardware leaks

e Hardware doesn’t know what is secret in software

Data Oblivious Programming

Definition

e Software solution to block microarchitectural side channel

attacks

« Rewrite programs in a data oblivious form (as a static

data-flow graph)

/* Source program */

if (secret)
a = *(addrl);

[ a & load addrl ] [ b & load addr2 ]

else
a = *(addr2);

/* machine code */

a « load (addrl);
b « load (addr2);

[ cmov secret, b, a ]

cmov secret, a, b;
// a = secret? b : a

Figure 2: Data oblivious programming example

Security assumptions

» Instructions are evaluated in a data-independent manner
« Data is transferred in a data-independent manner
» Instruction sequence is not a function of data

But SW-only Data Oblivious Programming fails on

modern processors!
All security assumptions can be undermined by
optimizations

hardware

Solution: Data Oblivious ISA (OISA)

ISA Design Methodology
« New instructions marking data as Confidential/Public
« New instructions featuring Safe/Unsafe operands

Runtime Checking:

optimizations
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Component 1: New Dynamic Information Flow
Tracking
« Tracking Confidential/Public in hardware

- Software defines secret data as Confidential

- Hardware tracks and taints data using DIFT

Component 2: New Instructions with Safe operands
« Each input operand is defined as Unsafe or Safe
- Safe operand blocks side channels from that operand
- Unsafe operand provides no protection
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Figure 3: Multiply with Unsafe operand. Confidential R2
Is leaked due to optimization zero-skipping.
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Figure 4: Multiply with Safe operand. Confidential R2 is
not leaked with optimization disabled.
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Design Features

Security: Defense against non-speculative &
speculative side-channel attacks

Evaluation
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Efficiency: Design space for safe optimizations
« High-performance instructions with safe operand
» Case 1: Oblivious load (with Safe address) from an object
of size N
- Baseline: linear scan — O(N)
- Optimization 1: Oblivious RAM — O(logN)
- Optimization 2: Hardware partitioning — O(1)
» Case 2: Oblivious sort
- Baseline: bitonic sort — O(Nlog2N)
- Optimization 1: constant time merge sort — O(NlogN)

Portability: Consistent security guarantee across
hardware instances

Putting it All Together

ISA design time n | =
ISA designers decide instructions with Safe ':S_::
/Unsafe operands —

Hardware design time
Hardware designers augment processors with
logic to enable/disable hardware optimizations

Programming time
Programmers annotate data as Confidential
/Public

Compilation time
Compilers generate executables with correct
security semantics

Runtime . . ey
Processors enforce runtime checking

COMPILER INFRASTRUCTURE

Hardware prototyping on RISC-V BOOM

« Proposing a Data Oblivious ISA Extension for RISC-V
instruction set

« Implementing new instructions with Safe operand

« Implementing new hardware DIFT logic

* Int/FP arithmetic with operands
* Branches/Jumps with Unsafe operands
e Two flavors of loads/stores
data, Unsafe address
data, address
* Instructions to set data as Confidential/Public

Figure 5: RISC-V OISA Extension

Performance Evaluation
« Achieving speedup of up to 8.8x over baseline data
oblivious programming
» (Case studies:
- AES: 4.4x speedup over bitslice AES
- Memory oblivious library: more than 4.6x
speedup over ZeroTrace [SGF’18]

Security Evaluation
* Proving non-interference property for the trace of
observable processor states
« Challenges:
- Formalizing attacker’s observability
- Modeling complicated modern processors

Long-Term Impact

OISA is a HW-SW security abstraction
» It closes ALL side-channel leakages
« It incorporates different side-channel mitigations

OISA is a bridge between secure hardware and

applied cryptography

» OISA is a preferred backend for data oblivious
programming frameworks

* OISA supports high-complexity Safe instructions

OISA motivates future (speculative) side-channel

defenses

» Speculative Taint Tracking [MICRO’19, best paper award ]
is inspired by OISA
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