
Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, Christopher W. Fletcher
Department of Computer Science, College of Engineering, University of Illinois at Urbana-Champaign

Data Oblivious ISA Extensions for Side Channel-Resistant and High-Performance Computing

Data Oblivious Programming

Definition
• Software solution to block microarchitectural side channel

attacks
• Rewrite programs in a data oblivious form (as a static

data-flow graph)

Figure 2: Data oblivious programming example

Security assumptions
• Instructions are evaluated in a data-independent manner
• Data is transferred in a data-independent manner
• Instruction sequence is not a function of data

But SW-only Data Oblivious Programming fails on
modern processors!
All security assumptions can be undermined by hardware
optimizations

Introduction

Microarchitecture side channel attacks
• Huge privacy threat
• Fundamental problem:

Secret data impacts HW resource usage
• Various attacks proposed for different HW resources

Figure 1: Attacker monitors cache pressure to learn secret

Difficulty in solving this type of attacks:
No contract between hardware and software
• Software doesn’t know what hardware leaks
• Hardware doesn’t know what is secret in software

Solution: Data Oblivious ISA (OISA)

ISA Design Methodology
• New instructions marking data as Confidential/Public
• New instructions featuring Safe/Unsafe operands

Runtime Checking:

Component 1: New Dynamic Information Flow
Tracking
• Tracking Confidential/Public in hardware

- Software defines secret data as Confidential
- Hardware tracks and taints data using DIFT

Component 2: New Instructions with Safe operands
• Each input operand is defined as Unsafe or Safe

- Safe operand blocks side channels from that operand
-Unsafe operand provides no protection

Putting it All Together

ISA design time
ISA designers decide instructions with Safe
/Unsafe operands

Hardware design time
Hardware designers augment processors with
logic to enable/disable hardware optimizations

Programming time
Programmers annotate data as Confidential
/Public

Compilation time
Compilers generate executables with correct
security semantics

Runtime
Processors enforce runtime checking

Evaluation

Hardware prototyping on RISC-V BOOM
• Proposing a Data Oblivious ISA Extension for RISC-V

instruction set
• Implementing new instructions with Safe operand
• Implementing new hardware DIFT logic

Figure 5: RISC-V OISA Extension

Performance Evaluation
• Achieving speedup of up to 8.8x over baseline data

oblivious programming
• Case studies:

- AES: 4.4x speedup over bitslice AES
- Memory oblivious library: more than 4.6x

speedup over ZeroTrace [SGF’18]

Security Evaluation
• Proving non-interference property for the trace of

observable processor states
• Challenges:

- Formalizing attacker’s observability
- Modeling complicated modern processors

if (secret)

a = *(addr1);

else

a = *(addr2);
addr1: XX

Load addr1

Cache

CPU Core

Memory

secret ==

True!

/* Source program */

if (secret)

a = *(addr1);

else

a = *(addr2);

/* machine code */

a ← load (addr1);

b ← load (addr2);

cmov secret, a, b;

// a = secret? b : a

a ← load addr1 b ← load addr2

cmov secret, b, a

multiplier

ID value tag

r1 1 Public

r2 0 Confidential

r3 0 Confidential

<unsafe>

<unsafe>

Register file

Fast, insecure with
Zero-skipping

multiplier

ID value tag

r1 1 Public

r2 0 Confidential

r3 0 Confidential

<safe>

<safe>

Register file

Slow, secure without
Zero-skipping

Figure 3: Multiply with Unsafe operand. Confidential R2

is leaked due to optimization zero-skipping.

Figure 4: Multiply with Safe operand. Confidential R2 is

not leaked with optimization disabled.

Design Features

Security: Defense against non-speculative &
speculative side-channel attacks

Efficiency: Design space for safe optimizations
• High-performance instructions with safe operand
• Case 1: Oblivious load (with Safe address) from an object

of size N
- Baseline: linear scan – O(N)
- Optimization 1: Oblivious RAM – O(logN)
- Optimization 2: Hardware partitioning – O(1)

• Case 2: Oblivious sort
- Baseline: bitonic sort – O(Nlog2N)
- Optimization 1: constant time merge sort – O(NlogN)

Portability: Consistent security guarantee across
hardware instances

• Int/FP arithmetic with Safe operands
• Branches/Jumps with Unsafe operands
• Two flavors of loads/stores

• Safe data, Unsafe address
• Safe data, Safe address

• Instructions to set data as Confidential/PublicIncorrect
speculation

Without
speculation

With
speculation

Appears in Network and Distributed System Security Symposium (NDSS), 2019
Distinguished Paper Award Honorable Mentions

Long-Term Impact

OISA is a HW-SW security abstraction
• It closes ALL side-channel leakages
• It incorporates different side-channel mitigations

OISA is a bridge between secure hardware and
applied cryptography
• OISA is a preferred backend for data oblivious

programming frameworks
• OISA supports high-complexity Safe instructions

OISA motivates future (speculative) side-channel
defenses
• Speculative Taint Tracking [MICRO’19, best paper award]

is inspired by OISA

Public data → Safe operand

Public data →Unsafe operand

Confidential data → Safe operand

Confidential data →Unsafe operand

Enable any HW
optimizations

Disable leaky
HW optimizations

Stop execution

Confidential data → Safe operand
Disable HW

optimizations

Confidential data → Safe operand

Unsafe operand

Stop execution

