Data Oblivious ISA Extensions for Side Channel-Resistant and High-Performance Computing

Appears in Network and Distributed System Security Symposium (NDSS), 2019

Jivong Yu, Lucas Hsiung, Mohamad El Hajj, Christopher W. Fletcher

Department of Computer Science, College of Engineering, University of Illinois at Urbana-Champaign

Introduction

Microarchitecture side channel attacks

« Huge privacy threat
« Fundamental problem:

Secret data impacts HW resource usage

« Various attacks proposed for different HW resources

CPU Core
Load addrl

if (secret)
a = *(addrl);

else

a = *(addr2);

\

secret ==
Truel

—-— o - e o o . o oy

——
bt

Figure 1: Attacker monitors cache pressure to learn secret

Difficulty in solving this type of attacks:
No contract between hardware and software
« Software doesn’t know what hardware leaks

e Hardware doesn’t know what is secret in software

Data Oblivious Programming

Definition

e Software solution to block microarchitectural side channel

attacks

« Rewrite programs in a data oblivious form (as a static

data-flow graph)

/* Source program */

if (secret)
a = *(addrl);

[a & load addrl] [b & load addr2]

else
a = *(addr2);

/* machine code */

a « load (addrl);
b « load (addr2);

[cmov secret, b, a]

cmov secret, a, b;
// a = secret? b : a

Figure 2: Data oblivious programming example

Security assumptions

» Instructions are evaluated in a data-independent manner
« Data is transferred in a data-independent manner
» Instruction sequence is not a function of data

But SW-only Data Oblivious Programming fails on

modern processors!
All security assumptions can be undermined by
optimizations

hardware

Solution: Data Oblivious ISA (OISA)

ISA Design Methodology
« New instructions marking data as Confidential/Public
« New instructions featuring Safe/Unsafe operands

Runtime Checking:

optimizations

Public data > Safe operand R .
> Enable any HW
| |

Public data - Unsafe operand

- ' Disable leaky |
Confidential data > Safe operand —ﬂ:_ HW optimizations

Confidential data > Unsafe operand — Stop execution i

Component 1: New Dynamic Information Flow
Tracking
« Tracking Confidential/Public in hardware

- Software defines secret data as Confidential

- Hardware tracks and taints data using DIFT

Component 2: New Instructions with Safe operands
« Each input operand is defined as Unsafe or Safe
- Safe operand blocks side channels from that operand
- Unsafe operand provides no protection

multiplier \

///> Register file
1o e e ansafer Wt
ri 1 Public >
) . <unsafe>
r2 0 Confidential >
r3 0 Confidential *))
Fast, insecure with

K Zero-skipping J

Figure 3: Multiply with Unsafe operand. Confidential R2
Is leaked due to optimization zero-skipping.

/ Register file multiplier \

o Juate g

<safe> /

ri 1 Public ”
<safe>

r2 0 Confidential safe >

r3 0 Confidential * _
Slow, secure without

K Zero-skipping /

Figure 4: Multiply with Safe operand. Confidential R2 is
not leaked with optimization disabled.

Distinguished Paper Award Honorable Mentions

Design Features

Security: Defense against non-speculative &
speculative side-channel attacks

Evaluation

Without Confidential data> Safe operand
speculation Disable HW
optimizations
r—— === ,

With | Confidential dataj> Safe operand
speculation *_ J

Incorre » Unsafe operand

speculation

Efficiency: Design space for safe optimizations
« High-performance instructions with safe operand
» Case 1: Oblivious load (with Safe address) from an object
of size N
- Baseline: linear scan — O(N)
- Optimization 1: Oblivious RAM — O(logN)
- Optimization 2: Hardware partitioning — O(1)
» Case 2: Oblivious sort
- Baseline: bitonic sort — O(Nlog2N)
- Optimization 1: constant time merge sort — O(NlogN)

Portability: Consistent security guarantee across
hardware instances

Putting it All Together

ISA design time n | =
ISA designers decide instructions with Safe ':S_::
/Unsafe operands —

Hardware design time
Hardware designers augment processors with
logic to enable/disable hardware optimizations

Programming time
Programmers annotate data as Confidential
/Public

Compilation time
Compilers generate executables with correct
security semantics

Runtime . . ey
Processors enforce runtime checking

COMPILER INFRASTRUCTURE

Hardware prototyping on RISC-V BOOM

« Proposing a Data Oblivious ISA Extension for RISC-V
instruction set

« Implementing new instructions with Safe operand

« Implementing new hardware DIFT logic

* Int/FP arithmetic with operands
* Branches/Jumps with Unsafe operands
e Two flavors of loads/stores
data, Unsafe address
data, address
* Instructions to set data as Confidential/Public

Figure 5: RISC-V OISA Extension

Performance Evaluation
« Achieving speedup of up to 8.8x over baseline data
oblivious programming
» (Case studies:
- AES: 4.4x speedup over bitslice AES
- Memory oblivious library: more than 4.6x
speedup over ZeroTrace [SGF’18]

Security Evaluation
* Proving non-interference property for the trace of
observable processor states
« Challenges:
- Formalizing attacker’s observability
- Modeling complicated modern processors

Long-Term Impact

OISA is a HW-SW security abstraction
» It closes ALL side-channel leakages
« It incorporates different side-channel mitigations

OISA is a bridge between secure hardware and

applied cryptography

» OISA is a preferred backend for data oblivious
programming frameworks

* OISA supports high-complexity Safe instructions

OISA motivates future (speculative) side-channel

defenses

» Speculative Taint Tracking [MICRO’19, best paper award]
is inspired by OISA

X ILLINOIS

