
FOUNDATION: SPECULATIVE TAINT TRACKING

Key feature: Blocking implicit channels
• For prediction: secret data cannot update predictors/be used for

prediction
• For resolution: delay resolution (squashes) until condition is no

longer secret
Observation: STT makes prediction SAFE
• Once applying the implicit channel protection, we can use prediction

for performance optimization without worrying about any
speculation leakage!

Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison*, Christopher W. Fletcher

Speculative Data-Oblivious Execution:

Mobilizing Safe Prediction For Safe and Efficient Speculative Execution

ACKNOWLEDGEMENTS

This work was funded in part by NSF under grant CNS-
1816226, Blavatnik ICRC at TAU, ISF under grant
2005/17,and by an Intel Strategic Research Alliance (ISRA)
grant.

KEY IDEAS

Idea 1: Execute transmit instructions in a data-oblivious fashion
→ worst-case execution

Idea 2: Avoid worst-case execution by predicting how the
execution should be performed

Idea 3: Protect the prediction with STT’s implicit channel
protection

INTRODUCTION

Speculative Execution Attacks
• Access instructions speculatively read sensitive data into

architectural state (e.g., registers)
• Transmit instructions transmit sensitive data via shared hardware

states
• Goal: leak secret (speculatively-accessed data)

Existing Mitigations

SPECULATIVE DATA OBLIVIOUS EXECUTION (SDO)

SDO Framework
• Define Data-Oblivious (DO) variants for a given transmit instruction

• Create dedicated DO predictor to predict DO variant at runtime
• [Follow STT’s protection] At runtime:

SDO Design for Loads
• Define DO variants:

• DO variant must be data-oblivious

• Customize DO predictor for loads (cache level predictor). General metrics:

• Resolve DO prediction when safe

PERFORMANCE EVALUATION

Evaluation Settings
• Gem5 simulator, w/ 3-layer cache with MESI protocol
• Transmitter covered by SDO:

CONCLUSIONS

• SDO is a new speculative execution attack mitigation
framework that enables strong security (equivalent to STT) and
high performance

• Key ideas

University of Illinois at Urbana-Champaign, *Tel Aviv University

if (addr < N) { // speculation

// access instruction

uint8_t val = A[addr];

// transmit instruction

uint8_t tmp = B[64 * val];

}

Defense
Strategy

Invisible Loads Delayed Execution

Examples
InvisiSpec [MICRO’18]
SafeSpec [DAC’19]
CleanupSpec [MICRO’19]

SpecShield [PACT’19]
Conditional Spec. [HPCA’19]
NDA [MICRO’19]
STT [MICRO’19]

Pros
High-performance
Never block execution

High-security
Guarantee security properties
(e.g., non-interference)

Cons
Low-security
Do not deliver rigid and
comprehensive security

Low-performance
Block execution of transmit
instructions

Our goal

Key capability: execute unsafe transmitters early and safely

o Each DO variant must be data-oblivious
o Each DO variant may produce invalid result unless inputs satisfies certain condition

o Secret data cannot update DO predictor/be used for predicting DO variant
o Delay resolution (squash) until condition is no longer secret

PC: dest <- ld addr

PC

Predictor

DO-ld_L2 addr

L1 cache:

L2 cache:

Memory:

(miss, ⊥)

(miss, ⊥)

success = False

dest = ⊥

addr: data

dest <- ld args

DO-ld_L1 : access L1
DO-ld_L2 : access L1, L2
DO-ld_Mem : access L1, L2, Mem

(dest_X, success_X) DO-ld_X addr
dest_X = ⊥ if success_X == FALSE

Attack Vectors Reason Mitigation Strategy

MSHR coalescing Requests share MSHR if
addresses match

Disallow MSHR coalescing for
DO-ld_X requests

Bank conflict Banks cover different
addresses

Serialize DO-ld_X access to
banks

Way prediction Use incoming address to
predict cache way

Disable way prediction / Apply
STT’s prediction mechanism

…… ……

o Accurate and precise: predicted cache level equal to actual cache level

o Accurate but imprecise: predicted cache level lower than actual cache level

o Inaccurate: predicated cache level higher than actual cache level

Transmit instruction signature dest <- op args

DO variant signatures (dest1, success1) <- DO-op1 args
…
(destN, successN) <- DO-opN args

DO variant predictor i <- Predictor.predict (public_input)
(desti, successi) <- DO-opi args

Resolving when safe
(condition is no longer secret)

Predictor.update(…)
if (!successi)

squash from “dest <- op args”

o Update predictor; squash pipeline if success == FALSE
o For multi-processor:

o DO-ld_X must not modify cache state
→ Data fetched by DO-ld_X may not be cached in L1
→May miss cache invalidation

o Solution: Apply invalidation infrastructure from Invisispec [MICRO’18]

o Floating-point multiply/divide: always predict non-subnormal
o Load: evaluating multiple DO predictors
o Static L1: always predict DO-ld_L1
o Static L2: always predict DO-ld_L2
o Static L3: always predict DO-ld_L3
o Hybrid: our customized tournament cache-level predictor
o Perfect: a theoretically-best DO predictor (oracle)

Spectre threat model Futuristic threat model

Spectre model Futuristic model

Config Precision Accuracy Precision Accuracy

Static L1 71.87% 71.87% 75.48% 75.48%

Static L2 7.01% 78.74% 6.58% 83.39%

Static L3 4.60% 85.04% 3.71% 89.25%

Hybrid 84.30% 86.49% 84.34% 87.18%

P
e

rf
 O

v
e

rh
e

a
d

 o
v

e
r

In
s

e
c

u
re

 B
a

s
e

li
n

e

Appeared in ISCA 2020

Intel Hardware Security Academic Award 2021

o STT provides principles for safe prediction and resolution
o SDO uses safe prediction/resolution to execute transmit

instruction early and safely by combining prediction with
data-obliviousness

