
Jiyong Yu, Mengjia Yan, Artem Khyzha*, Adam Morrison*, Josep Torrellas, Christopher W. Fletcher
{jiyongy2, myan8, torrella, cwfletch}@illinois.edu, artkhyzha@mail.tau.ac.il, mad@cs.tau.ac.il

University of Illinois at Urbana-Champaign, *Tel Aviv University

Speculative Taint Tracking: A Comprehensive Protection for

Speculatively Accessed Data

TAXONOMY OF COVERT CHANNELSINTRODUCTION

Speculative execution attacks
• Access instructions speculatively read sensitive data

into architectural state (e.g. registers)
• Transmit instructions transmit sensitive data via a

covert channel

Threat model
• Attacker’s goal is to learn values in microarchitectural

state. Retired (architectural) state is out of protection
scope

• Attacker has full knowledge of cache/TLB state,
functional unit pressure, program timing

Insights: It’s Safe to:
• Execute access instructions and
• Forward their results to non-transmit instructions

SPECULATIVE TAINT TRACKING (STT)

MICROARCHITECTURE DESIGN RESULTS

• Evaluate STT with Gem5 simulator, SPEC2006 benchmarks

• Main comparison
1. Insecure: unmodified, unsafe Gem5
2. DelayExecute: delay execution of all transmitter until

visibility point
3. STT: delay execution of tainted transmitters until

visibility point
4. InvisiSpec: a prior speculative attack defense scheme

Measure the performance overhead over the insecure baseline.

Conclusion: STT is an efficient scheme, with low overhead
even in strict threat model (Futuristic).

if (addr < N) {

// access instruction

uint8_t val = A[addr];

// transmit instruction

uint8_t tmp = B[64 * val];

}

Figure 1: A Spectre Variant 1 example (64B/cache line)

Covert channel

Explicit channel

load r1 <- [secret]

Implicit channel

Explicit branch
if (secret)

load r1 <- (r2)

Implicit branch
store r1 -> [secret]

load r2 <- [r3]

Prediction-based
if (secret)

……

if (X)

Resolution-based
if (secret)

tmp ++

load r1 <- [r2]

Explicit branch: branches causing instruction

sequence leaks condition secret
Implicit branch: load-store forwarding/memory

speculation leaks address secret

Prediction-based: predictor is trained by

secret, and leaks

Resolution-based: post-resolution execution leaks
secret

if (idx < 32) { // predicted

load r2 <- (r3) // execution proceeds

r4 <- r1 + r2 // execution proceeds

load r5 <- (r4) // execution is delayed!

}

Figure 2: Taxonomy of

covert channels

Figure 3: How STT blocks explicit channels

Benchmark SPEC2006

Visibility point Spectre Futuristic

DelayExecute 40% 182%

STT 8.5% 14.5%

InvisiSpec 7.6% 18.2%

Table 1: Comparing different defense schemes. Percentages

represent overhead over Insecure (assuming TSO model).

B1: if (r1 < 10) { // slow. correct

load r1 <- (r2) // access inst.

B2: if (r1) // fast. incorrect

L1: load r3 <- (r4)

}

B1 predict

B1 predicts

B2 predicts

-NotTaken

L1 executes

B2 predicts

-NotTaken
L1 executes

B2 resolves

-Taken

B2 resolves

-NotTaken

r1 = 0

B1 resolves

B1 resolves

Do not update

predictor

Squash

for B2

B1/B2 update

predictor

Blocking explicit channels
• Protection: STT blocks execution of speculative

transmit instruction with tainted argument(s)

Blocking implicit channels
• Prediction-based: tainted values cannot update

branch predictor/influence prediction
• Resolution-based: delay resolution (squash) until

branch condition is untainted

Framework
• Architects defines

- Access & transmit instructions
- Threat model (also called visibility point) as:

1. Spectre: branch is the cause of speculation
2. Futuristic: consider all causes of speculation

• Tainting/Untainting
- STT taints outputs of

1. Speculative access instructions
2. Instructions with tainted input

- STT untaints when
1. A speculative access instruction becomes

non-speculative
2. An instruction has all its input untainted

if (idx < 32) { // resolved

load r2 <- (r3) // execution proceeds

r4 <- r1 + r2 // execution proceeds

load r5 <- (r4) // execution proceeds

}
r1 = 1

Figure 4: How STT protects explicit branches

Pipeline frontend: taint tracking
• Visibility point (VP): assume Spectre model:

- Definition: The oldest unresolved branch
- Generation: see InvisiSpec

• Youngest Root of Taint (YRoT):
- Definition: The youngest access instruction with
data dependency
- Generation (at rename stage): for instruction

Rd <- op Rs1, Rs2,

Rd.YRoT = max(
((Rs1’s producer is an access instruction) ?

Rs1’s producer : Rs1.YRoT),
((Rs2’s producer is an access instruction) ?

Rs2’s producer : Rs2.YRoT)
)

Pipeline backend: protection
• Data independent arithmetic

- No protection needed

• Data dependent arithmetic, loads (explicit channel)
- Delay execution when

YRoT < VP Argument is tainted

• Branches (Implicit channel)
- Delay resolution/branch predictor updating when

YRoT < VP condition is tainted

Challenge: How to taint/untaint
• Fact: Taint comes from access instructions w/o

reaching visibility point
• Observation: access instructions reach visibility point

in program order
• Solution: Instruction inst is untainted if and only if

the youngest access instruction inst depends on
passes its visibility point.

This youngest access instruction is called Youngest
Root of Taint (YRoT).

1. r0 ← ld r1

2. if (r0)

3. r2 ← ld r3

4. r4 ← ld r5

5. if (r4)

6. r6 ← ld r7

7. r8 ← ld r9

8. r10 ← r2 + r6

9. r11 ← ld r10

None

None

None

None

4

None

None

6

6

ROBID YRoT

Oldest unresolved

branch

(visibility point)

1. r0 ← ld r1

2. if (r0)

3. r2 ← ld r3

4. r4 ← ld r5

5. if (r4)

6. r6 ← ld r7

7. r8 ← ld r9

8. r10 ← r2 + r6

9. r11 ← ld r10

None

None

None

None

4

None

None

6

6

Oldest unresolved

branch

(visibility point)

Figure 5: Tainting/Untainting

in microarchitecture

[Best paper Nominee]

