
147

Exposing Cache Timing Side-Channel Leaks through

Out-of-Order Symbolic Execution

SHENGJIAN GUO∗, Baidu Security, USA

YUEQI CHEN∗, Pennsylvania State University, USA

JIYONG YU, University of Illinois at Urbana-Champaign, USA

MENG WU, Ant Group, China

ZHIQIANG ZUO, State Key Lab. for Novel Software Technology, Nanjing University, China

PENG LI, Baidu Security, USA

YUEQIANG CHENG, Baidu Security, USA

HUIBO WANG, Baidu Security, USA

As one of the fundamental optimizations in modern processors, the out-of-order execution boosts the pipeline
throughput by executing independent instructions in parallel rather than in their program orders. However,
due to the side effects introduced by such microarchitectural optimization to the CPU cache, secret-critical
applications may suffer from timing side-channel leaks. This paper presents a symbolic execution-based
technique, named SymO3, for exposing cache timing leaks under the context of out-of-order execution. SymO3

proposes new components that address the modeling, reduction, and reasoning challenges of accommodating
program analysis to the software code out-of-order analysis.We implemented SymO3 upon KLEE and conducted
three evaluations on it. Experimental results show that SymO3 successfully uncovers a set of cache timing
leaks in five real-world programs. Also, SymO3 finds that, in general, program transformation from compiler
optimizations shrink the surface to timing leaks. Furthermore, augmented with a speculative execution
modeling, SymO3 identifies five more leaky programs based on the compound analysis.

CCS Concepts: · Security and privacy→ Software and application security; · Software and its engi-

neering→ Software verification and validation.

Additional KeyWords and Phrases: Out-of-order execution, cache timing, side-channel leak, symbolic execution

ACM Reference Format:

Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang.
2020. Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution. Proc. ACM
Program. Lang. 4, OOPSLA, Article 147 (November 2020), 32 pages. https://doi.org/10.1145/3428215

1 INTRODUCTION

In modern processor chips, CPU cache alleviates the outstanding speed disparity between the
processor and the main memory. Generally, processors buffer the recently used memory data in

∗These authors contributed equally.

Authors’ addresses: Shengjian Guo, Baidu Security, USA, sjguo@baidu.com; Yueqi Chen, Pennsylvania State University,

USA, ychen@ist.psu.edu; Jiyong Yu, University of Illinois at Urbana-Champaign, USA, jiyongy2@illinois.edu; Meng Wu,

Ant Group, China, bode.wm@antfin.com; Zhiqiang Zuo, State Key Lab. for Novel Software Technology, Nanjing University,

China, zqzuo@nju.edu.cn; Peng Li, Baidu Security, USA, lipeng28@baidu.com; Yueqiang Cheng, Baidu Security, USA,

chengyueqiang@baidu.com; Huibo Wang, Baidu Security, USA, wanghuibo01@baidu.com.

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART147

https://doi.org/10.1145/3428215

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3428215
https://doi.org/10.1145/3428215

147:2 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

the hierarchical caches for the quick future reuse, thus significantly avoiding latency from visiting
memory for the same data. Despite the tremendous importance, CPU cache is prone to cache timing
side-channel attacks due to the physically distinguishable timing differences between visiting cache
and the memory [Dhem et al. 1998; Gras et al. 2017; Gruss et al. 2016; Kocher 1996; Oren et al.
2015]. Based on the runtime timing statistics of the victims, external adversaries may infer victims’
confidential data to certain extents, by exploring the dependency between the confidentiality and
the timing characteristics. Practical cache timing attacks [Aldaya et al. 2019; Kocher et al. 2019;
Lipp et al. 2018] have been continuously threatening the cybersecurity of computer systems.
The straightforward way to prevent software from timing attacks is to precisely examine the

program’s cache behavior, thus uncovering the weak sites for leakage mitigation. A broad spectrum
of studies have investigated the detection of cache timing side-channel leaks, spanning from static
analysis [Doychev et al. 2013; Wang et al. 2019], through symbolic execution [Chattopadhyay et al.
2017; Chu et al. 2016; Wang et al. 2017], to dynamic analysis and testing [Basu et al. 2020; He et al.
2019; Nilizadeh et al. 2019; Xiao et al. 2017].
Nevertheless, the program runtime cache behavior is not only determined by its computation

logic but also can be implicitly affected by the microarchitectural factors of hardware. The out-
of-order execution [Smith and Pleszkun 1985], one of the fundamental optimizations in modern
pipelined processors, boosts the pipeline throughput by scheduling proper instructions out-of-order
rather than in the program order generated by compilers. Although out-of-order execution has
been designed to be transparent to the programs running atop, it indeed dramatically affects the
cache state during program execution.

Recent studies [Bulck et al. 2018; Lipp et al. 2018; Weisse et al. 2018] have revealed that due to the
side effects introduced by the out-of-order execution to the CPU cache state, sensitive data may leak
to external adversaries by deliberately magnifying the effects through cache timing side-channel.
To alleviate the leaking risk in secret-critical applications, a systematic leak detection technique for
out-of-order execution is highly desirable.
The existing program analysis based leak detection approaches mostly focus on the in-order

analysis for both sequential software [Chattopadhyay et al. 2017; Coppens et al. 2009; Doychev
et al. 2013; Wang et al. 2017, 2019] and concurrent programs [Barthe et al. 2014; Guo et al. 2018].
Recent works also tried modeling the non-functional speculative execution based on abstract
interpretation [Wu and Wang 2019], fuzz testing [Oleksenko et al. 2020], and symbolic execution
[Guarnieri et al. 2020; Guo et al. 2020; Wang et al. 2020]. Nevertheless, none of them are capable of
analyzing the effects of out-of-order execution on the program cache state. On the one hand, the
in-order methods assume that instruction executions must obey the program order, thus missing the
opportunities of reasoning the respective out-of-order side effects. On the other hand, the speculative
modeling approaches only re-order a bundle of instructions from predicted branches. At the same
time, instruction-level out-of-order execution [Smith and Pleszkun 1985] may non-deterministically
occur everywhere in program execution.

Achieving the goal of accommodating program analysis to out-of-order execution has to overcome
three significant challenges. The first challenge is about representing the complicated microar-
chitectural out-of-order scenarios in high fidelity, but, inside a user-space analysis software. The
second is to enforce the restrictions from both hardware architecture and software semantics in the
analysis, to ensure the feasibility of modeled out-of-order behaviors. The last is to systematically
identify a set of harmful executions, from the vast out-of-order search space, that may unveil the
violations of specific requirements, e.g., the cache timing leakage-free property; while eliminating
a large portion of redundant executions. The blend of these challenges demands new ingredients to
program analysis, for studying this emerging spectrum of threats that intensify software flaws in
the low-level hardware environment.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:3

Sensitive Input Original Program P Plain Input

Symbol
Input

Symbolic Executor
Cache Leak
Analysis Leak Cases

Reorder
Modeling

Out-of-Order
Generation

Necessity
Analysis

Fig. 1. The overall flow of the SymO3 method.

Towards this end, we propose SymO3, a symbolic execution-based technique for exposing the
cache timing leaks coupled with out-of-order execution. To address the above challenges, we
developed innovative solutions in SymO3, as shown by the four components in the dotted area
in Fig. 1. First, we break the complicated whole-path out-of-order situations into the essential
two-event reorder modeling, which can be readily integrated into a stateful symbolic execution
to produce out-of-order execution of two specific memory instructions. Second, we abstract the
hardware and software restrictions into a set of enforceable rules and embed them into the dynamic
symbolic executor, to guarantee the correctness of modeled out-of-order behavior. Third, we design
a new systematic out-of-order generation method, which seamlessly incorporates the above two
components to select suspicious memory event pairs that may cause leaks from the huge out-of-
order state space. Finally, we accommodate the constraint-solving based leak analysis into the
out-of-order scenarios to reason the existence of timing leaks in our SymO3 framework. To the best
of our knowledge, SymO3 is the first work that tailors symbolic execution for cache timing leakage
detection under the context of out-of-order execution.
Fig. 1 presents the overall flow of SymO3. Given a program P, which is leakage-free in in-order

execution, the sensitive data input, and the non-sensitive plain input, SymO3 symbolizes the sensitive
input and ignites the symbolic execution. During the dynamic exploration, the symbolic executor
interacts with the Out-of-order Generation component which subsequently communicates with the
reorder Necessity Analysis and the Reorder Modeling components, to decide the responsive activities
on interpreting memory instructions along an execution path. Based on these new constituents,
SymO3 integrates the constraint-solving based leak analysis to perform the timing leak detection
under the out-of-order scenarios. Finally, SymO3 outputs the identified leak cases.
To conclude, we make the following technical contributions:

• The identification and formalization of cache timing side-channel leaks introduced by the
CPU out-of-order execution.
• The symbolic execution-based systematic reasoning method, which proposes out-of-order
generation, reorder modeling, reorder necessity analysis, and leak analysis for identifying
harmful out-of-order behaviors and inputs that lead to timing leaks.
• The implementation and the evaluation, which demonstrate the effectiveness of the proposed
SymO3 technique in leak exposure.

We organize the rest of this paper as follows. Section 2 motivates our work, and section 3 states
background knowledge. We present the core techniques of SymO3 in section 4 and the evaluation
in section 5. Section 6 discusses the threats to validity, followed by the related work in section 7.
Finally, section 8 concludes this paper.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

147:4 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

2 MOTIVATION

This section uses an example to point out the problem. That is, how out-of-order execution can
introduce timing leaks into a program, which has no such risks in regular in-order execution.

2.1 The Running Example

Fig. 2(a) shows the program P . As listed in lines 2-3, P has six variables X, Y, Z, i, j, and k. Both
X and Y store 1-byte unsigned integer; Z is a 255-byte array; i, j, and k are register variables. We
deem that operating variables X, Y, and Z visits either cache or main memory, while in contrast,
accessing register variables i, j, and k requires no memory or cache visit. Moreover, we treat X as
the private data of P , and any form of disclosing the value or the range of X from investigating the
cache timing information turns to be a side-channel leak.

The load and store operators in P represent memory operations upon the associated operands.
For instance, at line 6, the store instruction iteratively writes data to each cell of array Z. At line 7,
the load instruction loads the value of X to the register variable j, which is then used in writing
Z[j] at line 8. Note that operating i and j involves register visits only, and we ignore the side
effects because of the negligible timing latency.
For brevity, we incorporate a simplified cache C for the cache behavior analysis. C is a fully-

associative cache with the least recently used (LRU) replacement policy. This setting means that
each local variable in P may associate with arbitrary cache line(s). Moreover, the variable type, the
cache availability, and the LRU policy jointly decide the actual cache mappings. We set C to 256
bytes and design each cache line with the exact one-byte capacity. As a result, C has 256 lines in
total, and we index them by #n where n ∈ [1, 256].

Fig. 2(b) shows how the variables map to cacheC when running P in the in-order and out-of-order
manner, respectively. Look into the in-order mappingψin first. Initially, we have an empty cache C .
On executing P , the first memory write (line 4) associate cache line #1 with Y. Next, the for loop
repeatedly writes array Z 255 times, mapping all array cells to lines #2-#256 of C . This is because
each uint8_t array item uses a whole cache line. Afterward, the load instruction at line 7 reads
X. Since cache C has been fully filled, this load would first evict Y from the least recently used
cache line #1 and then places X into line #1, as annotated by the dashed arrow in Fig. 2(b). Next,
the subsequent write to Z[j] must get a cache hit no matter the value of X since the entire array Z

remains in C . Finally, at line 9, reading Y might evict Z[0] or Z[1] because of three points: Y is no
longer in the cache; there is no empty cache line in C; the least recently used line could be either
line #2 (j!=0) or #3 (j=0) due to the write to Z[j].
This single-path program has a decided cache behavior. The first memory write to Y always

triggers a cache cold miss. The following 255 memory writes in the for loop consume the rest space
of C , and they all cause cache cold misses. The next memory read of X incurs a conflict miss while
its succeeding write of Z[j] must get a cache hit, as explained above. Finally, loading Y receives a
cache conflict miss. This cache behavior shows P has no timing leaks in the in-order execution Ð
external observers cannot learn the value of X by the constant program execution timing.

2.2 Out-of-Order Execution Brings Timing Leak

As studied above, P has stationary cache timing irrespective of the value of X. However, this property
could be falsified when taking account of the out-of-order execution.
Let us consider a potential out-of-order execution case. At line 8, the store to Z[j] has to

wait until reading X at line 7 finishes so that j is available in the register. These two instructions
are data-dependent and have to execute in-order. By contrast, the subsequent load Y accesses a
different address. As a result, under the out-of-order execution, once the former two instructions

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:5

1 // X: private data

2 uint8_t X,Y,Z[255];

3 reg uint8_t i,j,k;

4 store Y, 128;

5 for(i=0;i<255;i++)

6 store Z[i];

7 j=load X;//0<=X<255

8 store Z[j], 128;

9 k=load Y;

(a) The program P

256-byte

#1 #2 #3 #255 #256

Y Z[0] Z[1] Z[253] Z[254]

In-order mapping ψin
X

Y Z[0] Z[1] Z[253] Z[254]

X

Out-of-order: line 9 executes before line 7

Out of-order mapping ψout

(b) The cache mappings ψin and ψout

Fig. 2. Program P and the runtime cache mappings.

get stalled due to the cache miss hazard of reading X, the latter load Y could be scheduled. Indeed,
such out-of-order scheduling is likely to happen. Since Y has been in cache C because of the first
memory store at line 4, instruction load Y could be ready for execution in a few processor cycles
after querying Y from the cache.

The cache mappingψout at the bottom of Fig. 2(b) shows this out-of-order case. Again, cacheC is
initially empty. The first store to Y and then the array iteration, associate cache blocks #1-#256
with Y and Z. After that, following the out-of-order scheduling discussed above, instruction load Y

executes and gets a cache hit since Y is still in cache. This hit also updates line #1 to be the most

recently used line. Hence, cache line #2 turns to be the least recently used one now. Therefore, when
load X (line 6) executes, it first evicts Z[0] from line #2 by X, as annotated by the dotted arrow in
Fig. 2(b). Then, writing Z[j] executes, and P terminates.
Switch to the cache behavior analysis. The first 256 memory writes to Y and Z all have cache

cold misses. Then the out-of-order execution of load Y results in a cache hit and affects the cache
state. The following read of X has to evict Z[0], so it causes a conflict miss. The last memory write
of Z[j], however, can lead to two different results: a cache hit if X∈[1,255), or a cache miss if X=0
since Z[0] is no longer in the cache.

Thereby, if an adversary observes that running P costs more CPU cycles, she can learn that X has
a high potential to be 0. It is because of the unique cache behavior Ð only X,0 lets the execution of
P have two cache misses, thus distinguishable timing variance Ð accordingly, out-of-order execution
brings a new leak.

2.3 The Out-of-Order Statistics on Running P

It is worth noting that out-of-order execution can take place among various types of instructions.
We concentrate on the memory instructions as they directly affect the cache status. Specifically, we
only study how the memory read operations can be dynamically issued since the memory write

operations are generally allowed to have in-order executions in practice.
Let us denote the processor reorder buffer has δ entries, which indicates at most δ consecutive

instructions in the program order can enter the reorder buffer at one time, and, may run out-of-

order. In other words, if the distance of two reachable instructions, i.e., the number of in-between
runtime instructions, is more than δ , then the two instructions cannot simultaneously involve in
the out-of-order execution. Here we use δ=64 for the analysis.
The load Y is the last instruction in P . So it may have out-of-order behaviors against at most

49 instructions before it. That is, the beginning of the out-of-order window for load Y is roughly
after store Z[231] in the loop. Note that we treat line 5 as an atomic instruction. Similarly, load

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

147:6 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

Table 1. The cache behaviors of three memory operations under out-of-order execution.

Scenario load X store Z[j],128 load Y Result

In-order miss hit miss no-leak
9↷8 miss hit/miss miss leak
9↷7 miss hit/miss hit leak
9↷6 miss hit/miss hit leak
7↷6 miss hit miss no-leak

7↷6↷9 miss hit/miss miss leak
9↷6↷7↷6 miss hit/miss hit leak
7↷6↷9↷6 miss hit/miss hit leak

X may also expose out-of-order behaviors against 49 instructions before it since there is no data
dependency between load X and its predecessors.

Though program P has only two memory read instructions, the number of distinct out-of-order
behaviors based on these two load operations may explode to approximately 49*49=2,401 cases.
Moreover, we group these cases into seven equivalent classes w.r.t reading X and Y, and writing
Z[j], as shown in Table 1.

Table 1 summarizes the possible out-of-order execution scenarios and the resulting cache behav-
iors. Operator ↷ means its left-side operand executes before the right-side operand, thus forming
an out-of-order situation. For example, 9↷8 indicates line 9 executes right before line 8, while 9↷6

implies line 9 executes before some store Z[i] instructions in the loop. 7↷6↷9 shows that line 7
executes before some store Z[i] at line 6, and line 9 runs right after the loop; 7↷6↷9↷6 depicts
both line 7 and line 9 runs before some store Z[i], but line 7 has to run before line 9.
In Table 1, not all out-of-order cases are harmful, and 7↷6 is the harmless case. However, a

high portion (6/7) of out-of-order scenarios could introduce leaks. Interestingly, the appearances of
leaks differ. For example, in the case of X=0, only 9↷8 and 7↷6↷9 would have all-miss situations,
thus obviously longer timing. Moreover, if X!=0, these two have the same timing to the in-order
execution of P , thus no visible leaks. By comparison, if X!=0, the other four groups would get
two-hit results and faster timing, while upon X=0, the timing equals the in-order execution timing.
To conclude, the subtle timing leaks in P arise from the simultaneous blend of proper out-

of-order schedules and specific secret inputs. To this end, a systematic analysis technique that
(1) automatically distinguishes feasible leak-introducing out-of-order schedules, and (2) precisely
generates the leak-endorsing inputs would be indispensable. However, this analysis has rarely been
achievable in literature, and such shortage motivates our SymO3 work.

3 PRELIMINARIES

This section presents the preliminary knowledge of our work.

I1: r1 ← r4 / r7

I2: r8 ← r1 + r2

I3: r5 ← r5 + 1

I4: r6 ← r6 - r3

I5: r4 ← r5 + r6

I6: r7 ← r8 * r4

(a) A program snippet P

1

2

6

5

3 4
r1

r8

r5 r6

r4

(b) The data flow

In-order Execution

I1 I2 I3 I4 I5 I6

Out-of-order Execution

I1

I3 I5

I4

I2 I6

(c) The different schedules

Fig. 3. High-level view of the program execution.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:7

Fetch Decode Issue

Reservation Stations

Execute

FU
FU
......

FU
FU /* FU: Function Unit */

Commit

Reorder buffer

In-order Out-of-order In-order

Fig. 4. Microarchitectural view of the instruction execution.

3.1 The Out-of-Order Execution

3.1.1 The Concept. Pipelined processors usually divide the execution of instruction into several
stages to utilize the pipelines for best throughput. However, it is believed that a deeper pipeline
will not contribute more beyond some turning points due to the hardware cost and the control/data
hazards. Alternatively, the instruction-level parallelism, especially the out-of-order execution, plays
a crucial role in promoting the pipeline performance [Li et al. 2004].

At the high-level, out-of-order execution leverages the dynamic data flow rather than the static
program order to schedule instructions. A processor usually maintains a łsliding windowž of
consecutive instructions. Once an instruction turns to be ready, the processor selects that instruction
from the window and schedules it to run. Therefore, the executed orders of independent instructions
may disobey the original program order.
Fig. 3 shows an example program P [Etsion 2013] as well as the in-order and out-of-order

instruction scheduling strategies on running P . Fig. 3(a) lists the six instructions of P , labelled
by In where n∈[1,6]. Fig. 3(b) presents the data flow graph in which a node corresponds to an
instruction, and the directed edges denote the data dependencies. For example, the edge from node
① to ② indicates instruction I2 depends on I1, in terms of the annotated r1. Fig. 3(c) draws the two
schedulings of these instructions on running P .
Under the in-order execution, instructions are sequentially executed in the program order (ref.

Fig. 3(c)). Though I3, I4, and I5 are data-independent of preceding instructions I1 and I2 (ref. Fig. 3(b)),
they cannot execute before these predecessors.
Instead, out-of-order execution exploits the parallelism of scheduling independent instructions.

Assuming division computation consumes 20+ cycles while others like addition and subtraction
merely need 1-3 cycles. Then the first instruction I1 would cost an inevitably long execution time.
However, during such long latency, processors can schedule I3-I5 to run ahead of I2 (ref. Fig. 3(c)).
Though I5 relies on both I3 and I4, and it has to execute after them, this schedule still benefits
the overall performance. Note that out-of-order execution must preserve the program dependency
semantics. Hence, I2 and I6 cannot be scheduled beforehand.
At the microarchitectural level, the instruction execution process can be divided into multiple

steps as fetch, decode, issue, execute, and commit, as shown in Fig. 4 [Etsion 2013]. Following the
program order, a processor fetches and decodes a set of instructions and issues them to multiple
reservation stations (RSs). Once the operand data of an instruction gets ready and no contention
appears on the available executing resource, i.e., a specific function unit (FU), the instruction will
be moved from the RS to that FU to run. This mechanism, thus, gives birth to out-of-order execution
in a first-ready-first-run manner. At the end of the execute step, finished instructions broadcast
their computed data to signal the awaiting dependents to proceed. Finally, the finished instructions
enter the circular reorder buffer and commit in the program order again.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

147:8 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

3.1.2 Our Focus. In this work our SymO3 method leverages symbolic execution to examine the
cache side-effects from the out-of-order execution of memory instructions. Two recent symbolic
execution methods SpecuSym [Guo et al. 2020] and KLEESpectre [Wang et al. 2020] model microar-
chitectural speculative execution for side-channel leak pinpointing and vulnerability detection,
which closely relate to SymO3. However, SymO3 has threefold distinctions.

The speculative execution studied in [Guo et al. 2020; Wang et al. 2020] and the out-of-order

execution studied in SymO3 are two special instances of the general out-of-order execution, as later
discussed in Section 6. To minimize the vagueness, we by default use the term out-of-order execution

throughout this paper to refer to the out-of-order scenario studied in SymO3. Speculative execution
beforehand probes a sequence of instructions under a predicted branch leg, while out-of-order
execution tries to schedule the ready instructions as soon as possible to the reservation stations.
From the microarchitectural angle, they have orthogonal semantics; thus, we composite the cache
impacts from both in Section 5.4.

Besides, in Section 4, we establish the formalization and algorithm for the out-of-order execution.
They highly differ from those in SpecuSym and KLEESpectre, despite all these methods share the
fundamental state-forking mechanism from KLEE. Also, SpecuSym and KLEESpectre developed
forward modeling techniques while in contrast, SymO3 relies on backward modeling and prunes
unnecessary forward executions. However, SymO3 cannot model the speculative behaviors in
SpecuSym and KLEESpectre, and vice versa.
Moreover, SymO3 broadens the spectrum of the dynamic partial order reduction (DPOR) style

analysis to the cache analysis in Section 4. Classic DPOR methods like [Flanagan and Godefroid
2005; Yang et al. 2008] are confined to the equivalent classes of thread interleavings. SymO3 fuses
the hardware behaviors and the software restrictions into a synergistic reasoning algorithm upon
symbolic execution. Its general out-of-order modeling approach may apply to analogical problems,
e.g, the relaxed memory model analysis [Kusano and Wang 2017] with tolerable porting efforts.

3.2 The Cache Basics

CPU cache dedicates to reducing the average latency of visiting memory locations from the CPU.
When the CPU requests a memory operation for some data, it first inquiries the data existence in
the cache. If not cached, which indicates a cache miss, the request goes to memory to load data
into cache, and then returns the data to CPU. If the data is in the cache, which turns to be a cache
hit, the request directly retrieves the data without touching the memory.

The modern cache hierarchy often consists of L1, L2, and L3 caches. L1 cache has two sub-types as
instruction cache (i-cache) and data cache (d-cache). L1 and L2 caches reside in the same processor
core, while L3 cache is shared among multiple cores. In general, the closer to the processor core, the
faster cache speed and the smaller cache capacity, and vice versa. For example, the Intel Coffee Lake
microarchitecture-based CPU Core i7-8850H has six cores that share a 9MB L3 cache. Meanwhile,
each core owns 64KB L1 cache (half i-cache and half d-cache) and 256KB L2 cache.
Program analysis-based cache analysis methods [Basu and Chattopadhyay 2017; Brotzman

et al. 2019; Chattopadhyay et al. 2017; Guarnieri et al. 2020; Guo et al. 2018, 2020; Gysi et al.
2019; Wang et al. 2020, 2017, 2019; Wu and Wang 2019] abstract the microarchitectural behaviors
of certain instructions to form interceptable models, e.g., the cache-state abstract domain and
the constraint formula of cache behaviors, for the reasoning upon software-level techniques.
However, modeling the complete cache hierarchy by program analysis yet misses practical solutions.
First, the consistency synchronization within the hierarchical caches can rapidly deteriorate the
state expolsion problem of cache status. Second, latencies of different caches pose extraordinary
challenges for the uniform and precise modeling of timing problems. Third, the L3 cache shared by
multiple cores largely exaggerates the above two issues. To the best of our knowledge, only one

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:9

A 64-bit memory address addr

52 bits 6 bits 6 bits

64-6-6=52 log2(32KB/64/8)=6 log2(64)=6

tag(addr) set (addr) Line offset

Fig. 5. The tag id, associated set and line offset of addr under a 32KB 8-way cache.

recent static analysis method [Gysi et al. 2019] covers L2 and L3 caches of a fully-associative cache.
However, the cost of modeling mainstream set-associative caches remains unknown. Moreover, the
out-of-order analysis for timing leak detection still lacks, even under the L1 cache. As a result, in
this work we concentrate on the L1 d-cache and use it to represent the cache for short.

In practice, the cached data is organized by cache lines and cache sets. For instance, the 64-byte
cache line size of a 32KB d-cache means there are 512 (32KB/64B) lines in total. The 64-byte size also
implies the minimum unit of contiguous data that loads from memory each time. The approaches
that associate different memory locations to certain cache lines leads to three major cache types as
direct-mapped cache, fully-associative cache, and set-associative cache. In our experiments, we
evaluate SymO3 on set-associative caches because of its proven practicability.
In accordance with the latter cache analysis in Section 4.5, we define some formal notations:

• addr represents the memory address involved in a memory operation instruction.
• set (addr) gives the cache set with which addr associates.
• tag(addr) gives the tag id of addr w.r.t a given set-associative cache.
• K denotes the cache associativity, e.g., a 8-way set-associative cache indicates each set contains
eight cache lines thus K=8.

Fig. 5 demonstrates the calculations of the tag id and the associated set of a 64-bit memory
address addr under a 32KB 8-way set-associative cache. We assume each cache line here has a
64-byte size. Due to this 64-byte line, the rightmost 6 bits, which represent the location of the 1-byte
data of addr in a mapped cache line, can be calculated by log2(64)=6. Next, based on the 8-way
associativity and the 64-byte line size, we compute the number of cache sets to be 32KB/64/8=64.
Thus set(addr) returns the value of the middle 6 bits. Then, the remaining 52 bits belong to the tag
id, which can be obtained by tag(addr).
Then, we define a function ϕ to formally check whether two addresses addr1 and addr2 could

map to the same cache line:

ϕ (addr1 , addr2) := set(addr1) = set(addr2) ∧ tag(addr1) = tag(addr2) (1)

Note that ϕ does not require addr1 and addr2 to be the same address. Exampling the Fig. 5 cache,
visiting addr1 could load a block of 64-byte memory data d to fully fill a cache line l . If d still exists
in l on visiting addr2 afterward and ϕ satisfies, a cache hit appears.

3.3 The Cache Timing Leaks

Confidential data of critical programs may potentially leak to the unsafe zone via microarchitectural
side-channels when executing the vulnerable program implementations. The indistinguishability
property [Yu et al. 2019] formalized the elimination of a microarchitectural side-channel. That is,
for any public input t and any two secret inputs τ and τ ′, their execution traces must have no
distinguishable physical effects against a specific microarchitecture component:

ψ := ∀t ,τ ,τ ′ . Obs (Impµ (P (t ,τ)) = Obs (Impµ (P (t ,τ
′)) (2)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

147:10 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

Equation (2) characterizes the general abstraction of the side-channel-free property. Function Obs

evaluates the external adversary’s observation ability on the physical effects. Impµ represents a
microarchitecture implementation.P is the running program that inputs both public and secret data,
e.g., an encryption algorithm program that processes the plaintext and a private key to generate
the ciphertext.
Projecting the Impµ to the cache, we obtain the leakage-free property of cache timing side-

channel as follows. The cache timing leaks stem from the timing variance of cache behaviors when
executing different inputs. If we treat program P as a function of input in := (t ,τ), and letT (P(t ,τ))
denotes the execution time of an execution trace on in , then the observation Obs against cache
timing can be approximated to the observed execution time of that trace upon input in :

∀t ,τ . Obs (Impµ (P (t ,τ)) ≈ ∀t ,τ . Obstiming (P (t ,τ)) (3)

P may have multiple traces from various program paths. Since we target timing leaks introduced
by out-of-order execution, we assume P is leakage-free under in-order execution, which is:

ψin_order := ∀t ,τ ,τ ′ . Obstiming (P (t ,τ)) = Obstiming (P (t ,τ
′)) (4)

Still, τ and τ ′ represent any pair of secrets, and t is the public input. P is free of cache timing
side-channel leakage if two arbitrary in-order program traces have indistinguishable execution
time. Similarly, we define whether P suffers from new leakage under out-of-order execution by
checking the following formula:

ψout_order := ψin_order ∧
(

∃t ,τ ,τ ′ . Obstiming (Pout_order (t ,τ)) , Obstiming (Pout_order (t ,τ
′))
)

(5)

A new leak appears under the out-of-order execution context if two secret inputs τ and τ ′ do
exist and cause distinguishable Obstiming in the corresponding out-of-order traces. Note that we
primarily care about whether the secret can interfere with the cache state along an out-of-order

trace. In the analysis, we configure t to a concrete value to reduce the runtime overhead.

3.4 The Threat Model

As manifested in Section 2.2, external adversaries may learn the private data from analyzing the
victim’s runtime timing under out-of-order execution. To be capable of accomplishing such a threat,
the adversaries need to have privileged access to a malicious process sharing the physical cache
with the victim; so those adversaries can measure the interested memory access latency through
probe methods [Gruss et al. 2016; Yarom and Falkner 2014; Zhang et al. 2011]. They should also
be able to reason about the source code of the victim for possible out-of-order leaks as well as
triggering the execution of the victim. We believe this threat model is reasonable as it has been
proved feasible in practical attacks, such as [Disselkoen et al. 2017; Osvik et al. 2006; Yarom and
Falkner 2014]. It is also widely adopted in recent side-channel reasoning works [Brotzman et al.
2019; Doychev and Köpf 2017; Guo et al. 2020; Wang et al. 2020, 2017; Wichelmann et al. 2018].

4 OUT-OF-ORDER SYMBOLIC EXECUTION

This section reviews the baseline symbolic execution and then introduces the core components of
our SymO3 which build upon the baseline algorithm.

4.1 The Baseline Symbolic Execution

Symbolic execution [Clarke 1976; King 1976] has witnessed extensive advances [Bergan et al. 2014;
Bucur et al. 2011; Cadar et al. 2008; Ciortea et al. 2009; Guo et al. 2015; Pasareanu and Rungta

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:11

2010; Poeplau and Francillon 2020] in recent years. In this work, we adopt the recursive symbolic
execution algorithm and related knowledge from [Guo et al. 2015, 2018] as the baseline upon which
we build the new components of SymO3.

First, we assume that a program P comprises a finite set of paths, and each path contains a finite
sequence of instructions. Let inst be short for an instruction then ϵ :=⟨l , inst , l ′,nxt⟩ denotes the
symbolic event of an inst. l and l ′ represents the program locations before and after inst, and nxt

points to the next symbolic event for execution. The execution of P on input in:={t ,τ } explores a
series of symbolic events along the program path to which in leads.
Second, a symbolic state s stands for the frontier of exploring a path in P during the dynamic

execution. We also present s in a tuple as s:=⟨ϵ, pcon,m̂⟩. ϵ is the current symbolic event to execute
at s; pcon is the path condition from the execution entry to s; m̂ contains the memory mappings of
variables and their symbolic values at the time reaching ϵ .

Third, we abstract away the implementation details of symbolic event interpretation and perform
our analysis only against the execution of memory events. A memory event must associate with a
memory operation instruction, i.e., a memory read like v=load addr, or a memory write as store
addr val, where addr is a memory address, and val denotes a symbolic value. We use M-event to
refer to this event type. Other kinds of symbolic events, such as branch event and arithmetic events,
would execute as usual in symbolic execution since they do not directly impact the cache status.

4.2 The Out-of-Order Generation

Algorithm 1 The Out-of-Order Generation Algorithm

1: Initially: Create a global stack St; start StdSymExec with a seed state s0 on input {t0 , τ0 }.
2: procedure StdSymExec (Symbolic_State state)
3: St.push(state);
4: if state.ϵ is aM-event then ▷ The memory event interpretation
5: O3Gen(state); ▷ The entry of new SymO3 analysis
6: StdSymExec(NextSymState (state));
7: else

8: StdSymExec(NextSymState (state)); ▷ Other events execute as usual
9: end if

10: St.pop();
11: end procedure

12:

13: function O3Gen (Symbolic_State crt)
14: crt .done ← crt .done ∪ crt .ϵ ;
15: if crt.ϵ is a memory read event then
16: Let e be the closest event in crt .trace that RNA(crt, e) returns true; ▷ RNA analysis
17: if e , null then

18: prv ← the symbolic state that was about to execute e ;
19: if crt .ϵ < prv .done then

20: ReorderModeling (crt , prv); ▷ Invoke the out-of-order modeling
21: end if

22: end if

23: end if

24: crt .trace ← crt .trace · crt .ϵ ;
25: end function

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

147:12 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

In this section, we introduce the main procedure of SymO3 which starts at the interpretation
point of aM-event. We observe that, fundamentally, the feasible out-of-order behaviors among a
window of instructions can be decomposed to the blend of multiple two-instruction reorderings.
However, a straightforward reordering enumeration of potential instruction pairs can quickly result
in the state explosion. Also, certain rules of the environmental restrictions should be applied to
ensure the feasibility of the various reorderings. Moreover, a large portion of these pairs might be
redundant in terms of the unchanged cache state. Inspired by the dynamic partial order reduction

[Flanagan and Godefroid 2005; Yang et al. 2008, 2010], which searches for equivalent classes of
thread interleavings in concurrency analysis, we design a new algorithm Out-of-order Generation,
to systematically generate unique out-of-order symbolic states for the cache analysis.

4.2.1 The Algorithm. Algorithm 1 presents the proposed algorithm, which builds upon the baseline
symbolic execution procedure StdSymExec. We retain the unchaned part of StdSymExec, e.g, the
handling of other symbolic events except the memory events, and the sub-procedure NextSymState

which processes a symbolic event and returns the new state. Details of StdSymExec can be found
in [Guo et al. 2015, 2018]. The main changes start at line 5 Ð a new function O3Gen which ignites
the generation of instruction-level out-of-order executions by a backward analysis against the
current state state.
To keep pace with O3Gen, we extend the symbolic state s to be s:=⟨ϵ, pcon,m̂, trace, done⟩.

During the exploration of s , trace records the executed memory events; done records the set of
scheduled events at s, since the out-of-order modeling now may schedule multiple events at the
same program location. Generally, O3Gen first updates the done set of state crt (line 14), meaning
that event crt .ϵ has been processed in this backtracking, to avoid future re-analysis. Then, if crt .ϵ
is a memory read event, O3Gen backwardly searches crt .trace for the closest event e that may run
out-of-order with crt .ϵ , and the Reorder Necessity Analysis (RNA, ref. Section 4.3) can return true

(line 16). If such e does not exist, O3Gen appends crt .ϵ to crt .trace (line 24) and exits.
In contrast, if the desired event e does exist, then at line 18, O3Gen retrieves a prior symbolic

state prv who was about to execute e . More importantly, if crt .ϵ is not in the done set of state prv ,
O3Gen sends crt and e to function ReorderModeling for the two-event out-of-order behavior
modeling (ref. Section 4.4). In the end, O3Gen also updates crt .trace at line 24.

Assumptions:

b only depends on a

d only depends on c

c is independent of a and b

Reorder buffer size: 3

Cache type: fully-associative

a

b

c

d

In-order
path p1

#1

#2

#3

aux1

p2

c

b

d
#4

#5

aux2

p4

c

a

b

d

#6

#7

aux3

p3

d

b

#8

#9

#10#11

#12

aux4

p5

d

b

#13

#14

Fig. 6. The out-of-order generation and the preserved four new states

4.2.2 The Example. Fig. 6 shows an example for Algorithm 1. Without out-of-order execution,
there is an in-order execution path p1 of four memory read events a, b, c, and d. We assume that
b only depends on a and d only depends on c; but, c is independent of both a and b. Then, the
example is to, under the given assumptions, systematically generate new symbolic states to model
the distinct out-of-order behaviors along with exploring the in-order path p1 .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:13

Following Algorithm 1, the forward symbolic execution procedure StdSymExec calls the first
O3Gen, marked as #1, on approaching event a. Here we use the path-event convention, to name a
symbolic state. So the state right before a is p1-a. The O3Gen #1 puts a into the p1-a.done, but it
cannot find an event e before a because of the empty p1-a.trace. So #1 quickly returns after placing
a into p1-a.trace.
Whereafter, the second O3Gen invocation, #2, starts on arriving b. As b relies on a, the RNA

judges false (line 16, Algorithm 1), which means b cannot run before a. We color the backward
arrow in gray to mark such infeasible reordering. Similarly, both p1-b.trace and p1-b.done now
contains b after #2.

Going to c, O3Gen #3 finds that c and the closest event b qualify the RNA rules (ref. Algorithm
2). First, the in-between distance, one, is less than the reorder buffer size of three. Second, b and c

are data-independent; thus, they are unreachable in the data dependency graph built from a, b, and
c. Third, due to the assumed fully-associative cache, b and c have a mutual effect against the cache
state. Lastly, c is not in the done set of p1-b who only contains b. As a result, the ReorderModeling

function (line 20, Algorithm 1) forks a new state aux1 from p1-b, reorders c and b, and places aux1
to the global state pool for future exploration.

Proceeding to d, O3Gen #4 also returns early due to the assumed dependency between c and d.
After the execution goes to the end of p1, StdSymExec pops out states p1-d, p1-c, and p1-b due to
the recursion, and uses aux1 for the new exploration. At this point, aux1 is to execute c. O3Gen #5
duplicates a new state aux2 from aux1, to model the out-of-order situation between c and a. After
#5, StdSymExec schedules c and continues to b. Again, O3Gen tries backtracking from b to c (#6).
Though this time #6 can get through the RNA rules, it fails the checking at line 19 of Algorithm 1
because aux1.done already contains b from inheriting the done set of p1-b. Thereby, the condition
b < aux1.done is unsatisfiable, and #6 cannot trigger ReorderModeling for this reason.

Repeating StdSymExec until the global state stack St gets empty, our Out-of-order Generation
algorithm systematically explores unique out-of-order event pairs and prunes infeasible executions.
Moreover, it integrates the new auxiliary states into symbolic executor in a uniform way. In the
result of Fig. 6, our algorithm backtracks fourteen times but only preserves four distinct states that
represent unique out-of-order behaviors, as shown by the dotted arrow lines in Fig. 6.

4.2.3 The Proof. To show that Algorithm 1, when combined with Algorithm 3 and 2, covers all
feasible out-of-order program executions, we prove the following theorem based on induction:

Theorem 4.1. Suppose an in-order execution of a program withm instructions generates an event

sequence {e1, e2, ..., em}. Algorithm 1 generates the corresponding event sequences for any valid

out-of-order execution of the program.

Consider the first n instructions (in program order):

(1) When n=1, Theorem 4.1 holds because one event only has one event sequence, regardless of
in-order or out-of-order.

(2) Assume Theorem 4.1 holds for the first n instructions; we denote all possible event sequences
as P1, P2, ..., PXn . Xn represents the total number of valid executions, including both in-order
and out-of-order.

(3) When considering the first n + 1 instructions, we first notice that any valid event sequence
can be only constructed by inserting en+1 to an event sequence P from P1, P2, ..., PXn without
interchanging the order of any two events in the original sequence P , modulo the constraints
specified in Algorithm 2. The proof is straightforward: since en+1 is younger than e1, e2, ..., en
in program order, its executionwon’t affect the execution of the priorn instructions. Therefore,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

147:14 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

in any valid execution event sequence of the first n + 1 instructions, subtracting en+1 should
yield a valid event sequence of the first n instructions which appears in {P1, P2, ..., PXn }.

(4) To construct all possible execution sequences consisting of e1, e2, ..., en+1, we start by ap-
pending en+1 to every sequence P ∈ {P1, P2, ..., PXn }, and do O3Gen on the final state of P
for en+1 based on Algorithm 1. O3Gen swaps the en+1 with the previous event along the
sequence P unless the distance or data dependency constraint check in Algorithm 2 fails. This
ensures that we cover all possible event sequence based on P , since en+1 cannot be moved
forward due to the RNA rules, and doing O3Gen for all possible sequences with n instructions
(e1, e2, ..., en) is sufficient due to the analysis in (2).

4.3 The Reorder Necessity Analysis

Algorithm 2 The Reorder Necessity Analysis (RNA)

1: function RNA (Symbolic_State crt , Event e)
2: d ← the distance between crt .ϵ and e in the program order;
3: if d > 0 && d < rbs then ▷ The distance check
4: G ← the data dependency graph of crt .trace ;
5: if crt .ϵ and e are unreachable in G then ▷ The dependency check
6: if crt .ϵ and e have mutual cache effects then ▷ The cache effect check
7: return true ;
8: end if

9: end if

10: end if

11: return false ;
12: end function

This section proposes the Reorder Necessity Analysis (RNA), to assist the above Out-of-order
Generation algorithm. Due to the microarchitectural restrictions and the software data dependency,
only a subset of memory instructions may get involved in out-of-order execution. Therefore, we
design Algorithm 2 to enforce the necessity analysis against two candidate events.

In general, Algorithm 2 conducts a threefold analysis. The primary function RNA takes a symbolic
state crt and a symbolic event e as inputs. At line 2, RNA first calculates the distance d Ð the
number of events between e to crt .ϵ in the program order.

Then, if d < (0,rbs), RNA directly returns false at line 11, meaning that out-of-order execution of
crt .ϵ and e is infeasible. Otherwise, RNA continues to data dependency analysis (lines 4-5). Here
rbs shorts for the processor reorder buffer size. Learned from Fig. 4, instructions enter and leave
the reorder buffer in the program order. Only the head instruction in this circular buffer has retired
can its direct successor become the head. Then an awaiting instruction can enter this buffer. Thus,
if the number of in-between events of crt .ϵ and e reaches or exceeds rbs, the two events have no
chance to perform the out-of-order execution.

Going to the data dependency analysis, at line 4 RNA constructs a data dependency graph from
crt .trace . Note that based on symbolic execution, we can obtain dynamic variable values to build
a precise graph of G like Fig. 3(b). If two events, i.e., crt .ϵ and e , cannot reach each other in the
directed graph G , we affirm that they are independent and proceed to the third analysis, which
checks cache state interference. Otherwise, RNA also returns false .

The last analysis checks the mutual effect on the cache state between the given events (lines 6-7).
The inversed execution of two independent events may not necessarily be useful if the cache state,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:15

e.g., the cache content or the most recently used line of a cache set, remains the same no matter
which event runs first. If events e and crt .ϵ cannot impact each other regarding the cache status,
RNA returns false . If not, we deem the necessity of out-of-order modeling and let RNA return true .
We use Fig. 7, which depicts the out-of-order scenario of the motivating example, to explain

Algorithm 2. First, by observing the in-order events on the right-side in-order trace, we count the
distance between two events load X and load Y be two (including the former). Thus, d ∈ (0,rbs)
satisfies because rbs assumes to be 64 in the example. Second, since X and Y are not aliasing, the
memory read events of them are data-independent. Third, recall that the motivating example uses a
fully-associative cache. We view such a cache as a particular single-set cache to which any memory
operation might cause status change. Consequently, it is necessary to reorder the two events, and
RNA correspondingly returns true .
Note that the analysis under fully-associative cache costs more computations but misses no

suspicious cases. Moreover, for regular set-associative caches, memory events associated with
different sets may get RNA to return false .

4.4 The Reorder Modeling

As discussed, the complicated out-of-order execution along a program path can essentially break
into the combination of multiple two-event cases. We design the basic reorder modeling method
of two given events in Algorithm 3, which can embed into the Out-of-order Generation algorithm
introduced in Section 4.2.
Function ReorderModeling inputs two symbolic states, crt and prv , and tries to schedule

them out-of-order, which is to let event crt .ϵ run before prv .ϵ . Note that crt must be forwardly
reachable from prv , and event crt .ϵ has to be independent of prv .ϵ . Otherwise, crt .ϵ cannot execute
beforehand.

Algorithm 3 The Reorder Modeling of Two Symbolic Events.

1: function ReorderModeling (Symbolic_State crt , Symbolic_State prv)
2: aux ← fork a new symbolic state from prv and put it to state pool;
3: e ← declare an event variable that points to aux .ϵ ;
4: q1,q2← declare two empty queues for symbolic events;
5: while e ⪯ crt .ϵ do
6: if e is dependent of aux .ϵ then
7: q1.back().nxt = e ;
8: q1.push(e);
9: else

10: q2.back().nxt = e ;
11: q2.push(e);
12: end if

13: e ← the next event along the execution path to crt ;
14: end while

15: aux .ϵ ← q2.front(); ▷ Update the current event of aux
16: q2.back().nxt = q1.front(); ▷ Concatenate two event lists
17: q1.back().nxt = crt .ϵ .nxt ; ▷ Redirect to the next event
18: Clean temporary queues q1 and q2;
19: end function

At the beginning, ReorderModeling forks a new auxiliary state aux from its second input prv
(line 4), to act as the modeling transmitter. After the duplication, aux has the same state snapshot

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

147:16 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

to prv . Then, at lines 3-4, we define a temporary symbolic event e that points to aux .ϵ , and two
empty queues q1 and q2. Next, ReorderModeling iteratively checks the dependency of e and
aux .ϵ (line 6), and updates e to the next event (lines 13) along the trajectory between prv and crt ,
until e reaches crt .ϵ at the trajectory tail (line 5).
The while loop (lines 5-14) separates the iterated events into two queues. If the event that e

references to is data-dependent of aux .ϵ (line 6), we placed it to q1 (line 8). Similarly, we put events
that are irrelevant to aux .ϵ into q2 (line 11). Besides, before pushing e to either q1 or q2, we link
the neighboring events by associating the queue tail event with e (lines 7 and 10).
After the loop, ReorderModeling performs three updates. First, it resets aux .ϵ to the head

event of q2 (line 15), indicating that aux now is to execute the first event of the linked events that
are irrelevant to the original aux .ϵ . Second, it makes q2’s tail event point to q1’s head event (line
16) to reconnect the two event sequences. Finally, it sets the successor of q1’s rear event to the next
event of crt .ϵ (line 17), to finish rebuilding the event chain between aux and crt . In the future,
once the symbolic executor schedules state aux , it would execute along the reconstructed event
chain from aux to crt , which realizes the artificial out-of-order behavior.

store Y,128
store Z[0],0
......

store Z[254],254

j = load X --- E1
store Z[j],128 --- E2
k = load Y --- E3

①

② ③

④

aux

crt

prv

① State forking

② Link load Y

③ Link load X

④ Reset next event

Fig. 7. Out-of-order modeling of events E1 and E3

In general, ReorderModeling mimics the two-event out-of-order execution by exploiting the
stateful instinct of symbolic execution. Fig. 7 shows the modeling of the studied case in Section 2.2.
To schedule load Y before load X, let us name the two load events to be E1 and E3, respectively.
Following Algorithm 3, we divide the modeling progress into four steps in Fig. 7. The motivating
program P has only one path; thus, we depict the path by a sequence of memory instructions. The
black nodes represent the corresponding memory events.

In the example, we assume that the invocation of ReorderModeling happens at state crt , who
is about to execute E3. The other state, prv , was to execute E1. Since crt is forwardly reachable
from prv and E1 and E1 are data-independent, ReorderModeling can start with the two states
prv and crt safely.

As shown in Fig. 7, step ① first creates aux , a duplicate of state prv . Now, aux .ϵ is E1. After the
while loop in ReorderModeling , we get q1:=[E2, E1] and q2:=[E1]. Next, step ② resets aux .ϵ to
the front event of q2, which turns to be E1. Later, step ③ makes the nxt event of E1 be E1 because E1
is the head event in q1, and E1 is also the back event of q2. Finally, step ④ redirects the successor of
q1’s tail event, E1, to be the nxt event of crt .ϵ , which goes to the end of the path. So far, the event
chain reorganization finishes. In the future, the symbolic executor would first steer aux to E1 and
produce the out-of-order behavior accordingly.

4.5 Cache Leak Analysis

This section leverages the constraint-solving based approach to reason about the existence of leaks.
Specifically, we adopt the per trace approach [Basu and Chattopadhyay 2017; Chattopadhyay 2017;

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:17

Chattopadhyay et al. 2017; Guo et al. 2018, 2020; Wang et al. 2020], to conduct leak analysis against
the memory events on each out-of-order execution trace.

Algorithm 4 The Cache Leak Analysis

1: procedure StdSymExec (Symbolic_State state)
2:
3: if state.ϵ is aM-event then
4: CacheLeakAnalysis(state); ▷ Start the leak analysis
5: O3Gen(state);
6:
7: end if

8:
9: end procedure

10:

11: function CacheLeakAnalysis (Symbolic_State crt)
12: if crt is an out-of-order state && crt .ϵ is relevant to sensitive input then
13: σ ← form the leak constraint for event crt .ϵ ;
14: Solve σ ∧ crt .pcon for satisfiable inputs;
15: end if

16: end function

Algorithm 4 describes the leak analysis. Generally, before starting the O3Gen on a memory
event state .ϵ , we check whether it may lead to a cache timing leak. That is, before symbolically
executing state .ϵ , we analyze if, under some specific inputs, the cache behavior of state .ϵ differs
from its original behavior under in-order execution. SymO3 accomplishes such functionality by
adding CacheLeakAnalysis into the StdSymExec (line 4). In this new function, if the state crt is
generated from the out-of-order modeling, and crt .ϵ is relevant to the sensitive input (line 12), we
build the constraint σ that describes the leak condition of crt .ϵ (line 13), and solve σ ∧ pcon for
possible solutions (line 14).

Recall that we assume the target program is timing leakage-free in in-order execution; thus, each
in-order memory event causes either must-hit or must-miss. Then, σ states the condition for the
existence of a different cache behavior:

σ := ∃in .
(

αin (ei) , ∆ei

)

(6)

To be specific, given a memory event ei , if there exists an input in that makes αin (ei), the cache
hit constraint of ei under out-of-order execution, compute a different value from the in-order cache
behavior ∆ei , then there is a leak at ei . Here ∆ei is a constant hit/miss value, e.g., 1 for hit and 0 for
the miss, that can be obtained by an in-order run with arbitrary input.

To formally present αin (ei), we need two more notations:

• The trace constituent of a symbolic state consists of the executed memory events {e1 , ..., en }
in the execution order, where n is the total number of the events.
• ai , where i ∈ [1,n], represents the memory address involved in ei .

Next, we present the precise definition of αin (ei) as:

αin(ei) :=
(

∃x ∈ [0, i)
�

� ϕ (ax ,ai)
)

∧
(

∀y ∈ (x , i)
�

� ¬ϕ (ax ,ay)
)

∧

i−1
∑

z=x+1

(

set(az) = set(ai)
)

< K (7)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

147:18 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

Per a memory event ei , we first search its parent trace for the closest event ex before ei , who
and ei may map to the same cache line, l , by calling the function ϕ (Equation 1). Second, each
in-between event ey should not access the same line l . The third sub-constraint relies on the cache
replacement policy. Without loss of generality, we leverage the N-way set-associative cache and the
LRU replacement policy. So, we count the number of addresses visited between ex and ei . Moreover,
these addresses must associate with the same cache set to ai . More importantly, such a number has
to be less than the cache associativity K. This sub-constraint is to prevent from evicting the ax data
out of the cache, to promise a cache hit for ei .
Note that our leak analysis differs from SpecuSym [Guo et al. 2020] in two aspects. First, it

addresses all memory events on an out-of-order path, whereas SpecuSym will not analyze the cache
behaviors of speculated events. Second, SpecuSym reasons for the sequentially executed events
in speculation. Our new leak analysis can even analyze the speculated events in an out-of-order

manner, and we show the result in experiments.

5 EVALUATION

This section evaluates SymO3 with a set of real-world benchmarks. We implement SymO3 on the
latest KLEE 2.0 [Cadar et al. 2008] and LLVM 6.0 [Lattner and Adve 2004]. SymO3 adds four new
components into the original KLEE framework.

5.1 Benchmarks and Research Questions

We use a diverse set of 24 benchmarks collected from recent works [Chattopadhyay et al. 2017;
Guo et al. 2018, 2020; Gysi et al. 2019; Wang et al. 2020; Wu and Wang 2019] for the evaluation
of SymO3. These C benchmarks consist of cipher programs, elliptic curve computation programs,
worst-case execution time benchmarks, embedded media computation benchmarks, authenticating
library code, GDK library code, etc.
Table 2 provides more information of the benchmarks. For each one, we have the benchmark

name (Name), its origin (Source), the lines of C code (LoC), the number of memory visit events
(#.MemV), and the length of sensitive input in bytes (#.In). #.In also indicates the size of the
symbolic input. In each benchmark, we use the klee_make_symbolic function to initialize the
sensitive input into symbolic value and compile the program into LLVM bitcode.

We conduct the experiments on an Amazon EC2 c5.12xlarge instance, running the Ubuntu 16.04
64-bit Server Linux with a 48-core vCPU and 96GB RAM. The time threshold for running each
benchmark is twelve hours. To evaluate SymO3 against these benchmarks, we design the following
three research questions:

• RQ1: Is SymO3 capable of detecting the cache timing leaks by its software-based analysis?
• RQ2: Does program transformation, e.g., compiler optimization, have a significant effect on
the SymO3 detection result?
• RQ3: Is SymO3 also able to support speculative execution during its dynamic analysis?

5.2 The Leak Detection

5.2.1 The Configurations. In this evaluation, we use two set-associative caches: a 32 KB 4-way
cache and a 32 KB 8-way cache, namely 32K4W and 32K8W in the Cache column of Table 3. In both
caches, each cache line has the 64-byte capacity. These cache statistics are close to the L1 data
cache parameters in modern processors like Intel Skylake [Intel 2016] series. Thus, we deem that
they are reasonable settings.

We configure the reorder buffer size to be 32, 64, and 128, as shown by the RBS value at the top
row of Table 3. We use this variant to test the RBS impact on the leak detection. Note that the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:19

Table 2. The benchmark information: Name, Source, Lines of Code (LoC), the Number of Memory Visit Operations

(#.MemV), and the length of each Sensitive Input (#.In) in bytes.

Name Source LoC #.MemV #.In Name Source LoC #.MemV #.In

AES [LibTomCrypt 2019] 1,838 898 16 fixfrac [libfixedtimefixedpoint 2017] 63 28 59
AES [mbedTLS 2017] 281 245 272 hash [Rapier and Bennett 2008] 320 5297 64
adpcm [Gustafsson et al. 2010] 916 426 24 keyvalue [GDK 2018] 62 18 4

blowfish [LibTomCrypt 2019] 467 321 8 lblock [Dinu et al. 2015] 949 1233 10
Camellia [Tegra 2018] 1,324 10235 16 ocb [LibTomCrypt 2019] 377 260 28
chacha20 [LibTomCrypt 2019] 776 6870 36 PRESENT [Dinu et al. 2015] 215 57 19
chaskey [Dinu et al. 2015] 255 192 32 Salsa [Tegra 2018] 279 481 28
DES [glibc 2019] 547 687 16 Seed [Tegra 2018] 487 1753 16
DES [Libgcrypt 2018] 337 984 8 str2key [OpenSSL 2019] 371 89 16
ecc [FourQLib 2020] 224 251 320 stc [Lee et al. 1997] 494 242 1024

encoder [LibTomCrypt 2019] 134 37 100 trie [freeradius 2020] 162 51 32
FCrypt [Dellinger et al. 2011] 621 798 12 unicode [GDK 2018] 839 22 4

reorder buffer in Intel Skylake [Intel 2016] has 224 entries in total. Since each LLVM instruction may
correspond to multiple binary instructions [Poeplau and Francillon 2019] and even more micro-
instructions [Abel and Reineke 2019], our three RBS settings are comparable to the reorder buffer
size in real-world processors. Also, we use the -O0 compiler optimization level for the benchmark
compilation in this evaluation.
For each benchmark, we record the analysis time in minutes (Time (m)), the number of out-of-

order traces (#.Trace) derived from in-order executions, and the number of detected leaks (#.C/D) in
Table 3. The leak introduced by out-of-order execution may exhibit two forms. We name the first
one as consistently different, which means the new behavior is always different Ð e.g., always-hit in
in-order execution but always-miss in out-of-order execution, and vice versa. We call the second
type divergently different, which means the new behavior could be cache-hit under some inputs
but cache-miss under some other inputs. Table 3 uses #.C/D to distinguish such two leak types.
C-type leaks solely ascribe from the out-of-order schedules, and D-type leaks root from the blend of
out-of-order influences and the sensitive inputs.

5.2.2 The Results. Table 3 presents the experimental results. Overall, among all the RBS set-
tings, SymO3 can detect leaks in five programs AES [LibTomCrypt 2019], AES [mbedTLS 2017],
DES [Libgcrypt 2018], FCrypt [Dellinger et al. 2011], and Seed [Tegra 2018]. We summarize our
experimental findings in four points.
First, SymO3 found no C-type leaks in all programs. This fact implies, in most cases, the out-

of-order execution poisons the input data to form subtle leaks rather than directly causing leaks
by the out-of-order schedules. Also, the used -O0 option avoids aggressive transformation in
the compilation, which preserves the original memory-access patterns as much as possible. To
investigate if the optimized compilation could cause any experimental difference, we conduct a
comparison in Section 5.3.

Second, generally, the total analysis time, the amount of out-of-order traces, and the number of
detected leaks all rise in line with the increasing RBS size. It is because larger RBS allows more
instructions to enter the out-of-order window, which results in potentially vaster reorder state
space. However, compared to the sharply raised number of #.Trace, the increasing rate of leaks
and analysis time is gentle. On the one hand, SymO3 analyzes the traces efficiently, thus costing
tolerable time overhead. On the other hand, many traces cannot attribute to leaks, and SymO3

precisely eliminates them to retain a minimum set of leaks.
Third, the increased cache associativity does not always correspond tomore leaks. In AES [LibTom-

Crypt 2019], the 32K8W cache results in fewer leaks while in DES [Libgcrypt 2018], all the results

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

147:20 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

Table 3. The leak detection results under three RBS settings

Name Cache
RBS :32 RBS :64 RBS :128

Time (m) #.Trace #.C/D Time (m) #.Trace #.C/D Time (m) #.Trace #.C/D

AES[LibTomCrypt 2019]
32K4W 87.03 54837 0/36 105.02 96232 0/42 101.30 102304 0/42
32K8W 180.33 68114 0/31 208.11 115546 0/33 245.15 128867 0/33

AES[mbedTLS 2017]
32K4W 202.93 100658 0/83 365.68 106940 0/85 363.76 110803 0/91
32K8W 125.79 59846 0/85 232.14 89211 0/85 221.70 93237 0/91

adpcm[Gustafsson et al. 2010]
32K4W 24.88 49093 0/0 30.83 67902 0/0 32.17 85562 0/0
32K8W 20.64 25156 0/0 29.01 33888 0/0 30.19 45758 0/0

chaskey[Dinu et al. 2015]
32K4W < 0.01 1 0/0 < 0.01 1 0/0 < 0.01 1 0/0
32K8W < 0.01 1 0/0 < 0.01 1 0/0 < 0.01 1 0/0

blowfish[LibTomCrypt 2019]
32K4W 10.47 18470 0/0 11.32 21169 0/0 12.08 22369 0/0
32K8W 10.73 18470 0/0 10.81 21169 0/0 11.74 22369 0/0

Camellia[Tegra 2018]
32K4W 720 17084 0/0 720 33686 0/0 720 39870 0/0
32K8W 720 24603 0/0 720 46205 0/0 720 52830 0/0

chacha20[LibTomCrypt 2019]
32K4W 0.48 1 0/0 0.51 1 0/0 0.83 1 0/0
32K8W 0.48 1 0/0 0.51 1 0/0 0.77 1 0/0

DES[OpenSSL 2019]
32K4W 189.94 1 0/0 208.08 1 0/0 204.17 1 0/0
32K8W 158.94 1 0/0 197.29 1 0/0 254.50 1 0/0

DES[glibc 2019]
32K4W 1.17 1 0/0 1.62 1 0/0 2.10 1 0/0
32K8W 1.18 1 0/0 1.26 1 0/0 2.07 1 0/0

DES[Libgcrypt 2018]
32K4W 34.30 1459 0/120 39.87 2563 0/120 52.02 2962 0/120
32K8W 62.83 1459 0/120 73.34 2563 0/120 74.83 2962 0/120

ecc[FourQLib 2020]
32K4W < 0.01 1 0/0 < 0.01 1 0/0 < 0.01 1 0/0
32K8W < 0.01 1 0/0 < 0.01 1 0/0 < 0.01 1 0/0

encoder[LibTomCrypt 2019]
32K4W < 0.01 1 0/0 < 0.01 1 0/0 < 0.01 1 0/0
32K8W < 0.01 1 0/0 < 0.01 1 0/0 < 0.01 1 0/0

FCrypt[Dellinger et al. 2011]
32K4W 327.45 49252 0/92 525.39 50722 0/92 558.74 51304 0/92
32K8W 238.05 34964 0/92 389.18 42909 0/96 464.43 43803 0/96

fixfrac[libfixedtimefixedpoint 2017]
32K4W 0.02 1 0/0 0.02 1 0/0 0.02 1 0/0
32K8W < 0.01 1 0/0 0.02 1 0/0 0.02 1 0/0

hash[Rapier and Bennett 2008]
32K4W 19.45 1 0/0 25.27 1 0/0 35.30 1 0/0
32K8W 26.32 1 0/0 32.06 1 0/0 42.89 1 0/0

keyvalue[GDK 2018]
32K4W < 0.01 1 0/0 < 0.01 1 0/0 < 0.01 1 0/0
32K8W < 0.01 1 0/0 < 0.01 1 0/0 < 0.01 1 0/0

lblock[Dinu et al. 2015]
32K4W 600.94 11078 0/0 720 11078 0/0 698.04 11078 0/0
32K8W 1.11 1 0/0 1.44 1 0/0 1.24 1 0/0

ocb[LibTomCrypt 2019]
32K4W < 0.01 1 0/0 < 0.01 1 0/0 < 0.01 1 0/0
32K8W < 0.01 1 0/0 < 0.01 1 0/0 < 0.01 1 0/0

PRESENT[Dinu et al. 2015]
32K4W 1.06 1 0/0 1.10 1 0/0 1.10 1 0/0
32K8W 0.68 1 0/0 1.57 1 0/0 0.68 1 0/0

Salsa[Tegra 2018]
32K4W 0.04 1 0/0 0.05 1 0/0 0.08 1 0/0
32K8W 0.04 1 0/0 0.05 1 0/0 0.09 1 0/0

Seed[Tegra 2018]
32K4W 117.42 55109 0/207 138.12 86954 0/210 149.86 132902 0/214
32K8W 720 85365 0/219 720 163266 0/237 720 223443 0/242

stc[Lee et al. 1997]
32K4W < 0.01 1 0/0 < 0.01 1 0/0 < 0.01 1 0/0
32K8W < 0.01 1 0/0 < 0.01 1 0/0 < 0.01 1 0/0

trie[freeradius 2020]
32K4W < 0.01 1 0/0 0.01 1 0/0 < 0.01 1 0/0
32K8W < 0.01 1 0/0 0.01 1 0/0 < 0.01 1 0/0

unicode[GDK 2018]
32K4W 11.18 162318 0/0 22.01 222578 0/0 34.64 290581 0/0
32K8W 7.08 112651 0/0 8.66 147254 0/0 15.25 172955 0/0

are the same. In another AES [mbedTLS 2017], 32K8W brings two more leaks under RBS:32; however,
the results are the same under both RBS:64 and RBS:128. By contrast, FCrypt suffers from slightly
more leaks under 32K8W with RBS:64 and RBS:128 but no difference with RBS:32. Moreover, SymO3

detects more leaks under 32K8W cache in Seed [Tegra 2018]. Intuitively, larger cache associativity
means more cache lines per set, which may reduce the eviction risk for an address. However, the
tradeoff is that more memory addresses can now map to the same cache set. After studying the
bitcode, we find that the in-between instructions of two same-address memory events may directly
impact the cache state. Thereby, the results of changed cache associativity values vary against
per-program semantics.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:21

Fourth, the timing leaks from out-of-order execution are hard to detect though they can appear in
various caches. SymO3 finishes 23 of the 24 programs within the 12-hour threshold. One exception
is Camellia [Tegra 2018], which has the most significant number of 10,235 memory read events,
and SymO3 found no leaks until timeout. The other one is Seed [Tegra 2018], which exposed more
than 200 leaks before timeout under 32K8W. Moreover, out of the 144 experiments which test the
combination of different cache associativity and RBS, only 30 experiments expose leaks. Among the
3.9+ million traces of all the 144 experiments, the leaks only appear in less than 0.1% of the total
traces. This phenomenon explicitly illustrates the elusiveness of the leaks, which also highlights
the detection ability of SymO3.
Based on the experimental results, we answer RQ1: within 12 hours, SymO3 is capable of

disclosing hundreds of cache timing leaks in 5 out of 24 benchmarks. It also supports different
cache settings and different RBS parameter to perform rich comparisons of the results.

5.3 The Program Transformation Impact

In section 5.2, we used -O0 as the default compiler optimization option to retain the original
program structure as much as possible for leak analysis. However, in practice, people may prefer
a higher optimization level in software release for better performance, assuming the aggressive
transformation would correctly preserve the software semantics. Recent works studied the perfor-
mance impact of code transformation [Cadar 2015; Chen et al. 2018; Dong et al. 2015] in symbolic
execution. Nevertheless, how the transformation could silently affect the software non-functional
properties remain unknown. In this section, we experiment with more options, i.e., -O1, -O2, and
-O3, to study how the compiler optimization can roughly affect the SymO3 detection results.

Table 4. The experimental results of -O1, -O2, and -O3 options under RBS:32

Name Cache
-O1 -O2 -O3

#.Trace #.RNA Time(m) #.C/D #.Trace #.RNA Time(m) #.C/D #.Trace Time(m) #.RNA #.C/D

AES-tom
32K4W 46594 186791 720 0/28 14755 290485 567.5 0/22 19269 523.2 245214 0/58
32K8W 73694 120633 720 0/0 47331 158063 720 0/0 52620 720 127040 0/0

AES-mbed
32K4W 1 26 720 0/0 1 26 720 0/0 1 720 26 0/0
32K4W 1 26 720 0/0 1 26 720 0/0 1 720 26 0/0

DES-gct
32K4W 7902 478500 654.0 0/159 5652 472748 691.3 0/145 11402 720 475748 0/145
32K4W 14567 439473 720 0/0 17156 430778 720 0/0 17356 720 440828 0/128

FCrypt-chrn
32K4W 11306 165848 263.2 0/62 10255 60418 377.9 0/63 10255 368.9 60418 0/63
32K4W 32745 118715 653.4 0/80 15463 34988 613.1 0/63 15463 609.6 34988 0/63

Seed-tegra
32K4W 14255 374481 720 0/143 37971 284301 720 0/0 31761 720 291174 0/0
32K4W 55432 216618 720 0/0 78245 121536 720 0/0 59786 720 174221 0/0

encoder-tom
32K4W 6 18 <0.01 1/0 6 18 <0.01 1/0 6 <0.01 18 1/0
32K4W 6 18 <0.01 1/0 6 18 <0.01 1/0 6 <0.01 18 1/0

Table 4, Table 5, and Table 6 present the comprehensive leak detection results performed with
three reorder buffer sizes, two cache associativity values, and three compiler optimization levels.
We exclude the benchmarks with unchanged leaky results from Table 3, and record the amount
of out-of-order traces (#.Trace), the times of invoked RNA checks (#.RNA), the total analysis time
(Time(m)), and the two types of leaks (#.C/D) for each of the retained benchmark. For brevity,
we use alias names to represent the programs and their sources. For example, AES-tom comes
from [LibTomCrypt 2019]; AES-mbed belongs to [mbedTLS 2017]; DES-gct is from [Libgcrypt
2018]; FCrypt-chrn reside in [Dellinger et al. 2011]; Seed-tegra corresponds to [Tegra 2018]; and
encode-tom exists in [LibTomCrypt 2019].
Fig. 8 visualizes the overall performance variances of higher compiler optimizations against

-O0. Let us name the four scatter plots as SP1, SP2, SP3, and SP4, following the left-to-right and
top-to-bottom orders. Each scatter plot aggregates the data columns from the above three tables

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

147:22 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

Table 5. The experimental results of -O1, -O2, and -O3 options under RBS:64

Name Cache
-O1 -O2 -O3

#.Trace #.RNA Time(m) #.C/D #.Trace #.RNA Time(m) #.C/D #.Trace #.RNA Time(m) #.C/D

AES-tom
32K4W 19639 219664 720 0/0 1 23 720 0/0 23002 290521 720 0/57
32K8W 52812 293236 720 0/0 1 23 720 0/0 72797 164890 720 0/0

AES-mbed
32K4W 1 33 720 0/0 1 33 720 0/0 1 33 720 0/0
32K4W 1 33 720 0/0 1 33 720 0/0 1 33 720 0/0

DES-gct
32K4W 11402 546435 661.6 0/158 23924 531729 720 0/167 4064 537522 720 3/127
32K4W 27044 473760 720 0/0 12064 487022 720 0/0 17441 503102 720 0/0

FCrypt-chrn
32K4W 17428 243286 258.3 0/62 10255 63754 403.6 0/63 10255 63754 367.4 0/63
32K4W 43021 167628 612.9 0/80 16256 36353 720 0/63 16256 36353 720 0/63

Seed-tegra
32K4W 23874 419281 720 0/0 35682 375927 720 0/0 33768 370319 720 0/0
32K4W 71027 226922 720 0/0 60651 289303 720 0/0 87724 148155 720 0/0

encoder-tom
32K4W 6 18 <0.01 1/0 6 18 <0.01 1/0 6 18 <0.01 1/0
32K4W 6 18 <0.01 1/0 6 18 <0.01 1/0 6 18 <0.01 1/0

Table 6. The experimental results of -O1, -O2, and -O3 options under RBS:128

Name Cache
-O1 -O2 -O3

#.Trace #.RNA Time(m) #.C/D #.Trace #.RNA Time(m) #.C/D #.Trace #.RNA Time(m) #.C/D

AES-tom
32K4W 85009 230585 720 0/32 1 23 720 0/0 18775 358836 720 0/52
32K8W 95405 203619 720 0/0 1 23 720 0/0 82189 89786 720 0/0

AES-mbed
32K4W 1 41 720 0/0 1 41 720 0/0 1 41 720 0/0
32K4W 1 41 720 0/0 1 41 720 0/0 1 41 720 0/0

DES-gct
32K4W 12226 595582 720 0/149 16966 587557 720 0/146 11392 588247 720 0/144
32K4W 28526 532193 720 0/144 34694 500157 720 0/0 46713 480691 720 0/0

FCrypt-chrn
32K4W 25045 318438 206.1 0/69 10255 68668 403.1 0/63 10255 68668 413.7 0/63
32K4W 45542 183158 505.8 0/80 16309 37098 642.4 0/63 16309 37098 651.8 0/63

Seed-tegra
32K4W 14897 568528 720 0/0 71223 303988 720 0/0 58798 426485 720 0/0
32K4W 65311 327425 720 0/0 79011 348981 720 0/0 87641 257529 720 0/0

encoder-tom
32K4W 6 18 <0.01 1/0 6 18 <0.01 1/0 6 18 <0.01 1/0
32K4W 6 18 <0.01 1/0 6 18 <0.01 1/0 6 18 <0.01 1/0

and the corresponding columns in Table 3, where the x-axis shows the running statistics of the
-O0 result, and the y-axis states, under the same experimental configurations, the results after
compiler optimizations. We use three colors to annotate these optimization options. Thus, each
point represents a comparison between a higher optimization result and the -O0 result. A point
bellow the diagonal line indicates a larger -O0 result, and vice versa. For instance, in SP1 which
compares the amount of out-of-order traces, the point with the lowest y-axis value means this -O3
analysis generate more traces than the -O0 result. Next, we explain the following findings.

First, the code transformation by compiler optimizations does impact the leak detection. The two
extreme cases are AES-mbed and encoder-tom. The -O0 version of the former suffers from leaks
under all caches. However, it becomes leak-free after compiler optimization, no matter -O1, -O2,
or -O3. By contrast, the non-optimized encoder-tom has no leaks in all caches, but the compiler
optimizations introduce a new C-type leak, which appears in all the three experimental tables. Other
programs partially have leaks under specific combinations of cache configuration and compiler
optimization. For example, in the three data tables, six out of eighteen AES-tom entries endorse the
leaks. Moreover, such results of DES-gct and Seed-tegra are 11/18 and 1/18, respectively.
Second, in general, higher compiler optimizations increase the total analysis time on these

benchmarks. In Table 3, 93.75% of the analysis finishes in 12 hours. However, within this time
threshold, now only 36.1% of the analysis can finish in Table 4, Table 5, and Table 6. In Fig. 8, the
SP3 clearly shows this trend where only a small set of the points are below the diagonal line. Also,
although the -O0 analysis calls much more times of RNA checks, as depicted in the SP2, we cannot
observe a similar distribution in SP1 which compares the generated traces. Furthermore, in SP1, the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:23

101 102 103 104 105

102

104

The amount of traces (-O0 result)

T
h
e
tr
ac
es

(H
ig
h
er

co
m
p
il
er

o
p
ti
m
iz
at
io
n
s)

-O1
-O2
-O3

103 104 105 106
103

104

105

106

The invoked checks (-O0 result)

T
h
e
ch
ec
k
s
(H

ig
h
er

co
m
p
il
er

o
p
ti
m
iz
at
io
n
s)

-O1
-O2
-O3

100 101 102 103
100

101

102

103

The -O0 analysis time (m)

A
n
al
sy
is
ti
m
e
(H

ig
h
er

co
m
p
il
er

o
p
ti
m
iz
at
io
n
s)

-O1
-O2
-O3

0 200 400
0

200

400

The amount of leaks (-O0 result)

T
h
e
le
ak
s
(H

ig
h
er

co
m
p
il
er

o
p
ti
m
iz
at
io
n
s)

-O1
-O2
-O3

Fig. 8. Higher compiler optimization results versus -O0 result.

points above the diagonal line expose farther distances to such line, indicating more traces in the
optimized analysis, thus more time needed.
Third, despite the increasing analyzing time, the overall amount of leaks after compiler opti-

mizations decreases. In SP4 which compares the found leaks, we observe that most of the points
are below the diagonal line, indicating fewer leaks after optimizations. By reading the bitcode, we
confirm the primary reason for this fact is from the reduced number of memory instructions. To
be specific, the optimizations try to replace memory visits with register visits as much as possible
to reduce the performance latency. Instead of loading and storing some memory values time and
again, the compiler utilizes the adequate register slots for faster access. In this way, the compiler
eliminates unnecessary memory visits and make the nearby memory events mostly visit different
addresses. Then, given the same RBS, the memory events residing in the reorder buffer are more
likely to have cache mutual effects. Thus, the leak surface shrinks.

Fourth, the C-type leaks now appear in DES-gct and encoder-tom. Recall that SymO3 detects no
such C-type leaks in Table 3. The optimization has changed the code layout, making the out-of-order
schedules directly cause C-type leaks in the two optimized programs. Considering the limited
number of only four C-type leaks, we again learn the rareness of such leaks. However, SymO3 can
precisely reveal them.
Now, we answer the RQ2: the compiler optimizations pose significant impacts on the leak

detection. In general, the optimizations increase the overall detection time and decrease the total

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

147:24 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

Table 7. The differences caused by Speculative Execution

Name Cache Time (m) #.Trace #.C/D

AES[LibTomCrypt 2019]
32K4W +90.41 +920700 +3/+25
32K8W +64.00 +1222135 0/+36

blowfish[LibTomCrypt 2019]
32K4W +40.76 +39870 0/+2
32K8W +48.66 +70056 0/0

chacha20[LibTomCrypt 2019]
32K4W +374.50 +91224 +5/0
32K8W +377.29 +91543 +61/0

encoder[LibTomCrypt 2019]
32K4W < +0.01 +6 +1/+5
32K8W < +0.01 +6 +1/+5

DES[OpenSSL 2019]
32K4W +511.92 0 +5/0
32K8W + 522.71 0 +10/0

DES[glibc 2019]
32K4W +2.29 0 +6/+16
32K8W +2.49 0 +1/+26

amount of identified leaks. After optimizations, one benchmark has no leaks, while another non-
leaky program suffers from a new C-type leak. In two programs, SymO3 even witnesses four C-type
leaks, which never appear in Table 3.

5.4 The Compound Analysis with Speculation

Recall that SymO3 primarily focuses on the out-of-order execution of independent memory instruc-
tions, which considers no branch prediction and the corresponding speculative execution. However,
in practice, the speculated memory instructions may also occupy the available reorder buffer slots
and participant out-of-order execution. In this section, we conduct a compound analysis, which
augments SymO3 with a simplified branch prediction, to study the side effects introduced by the
speculative execution to the cache.
SpecuSym [Guo et al. 2020] is a symbolic execution tool that targets cache timing leaks under

speculative execution. We adopt the idea of SpecuSym [Guo et al. 2020] into our SymO3 framework.
To be specific, we consider two cases at each branchś the right prediction and a misprediction. Upon
the right prediction, we allow a limited number of speculated instructions to enter the symbolic
trace for out-of-order execution. Regarding the misprediction, after speculation, we will continue
the instructions under the right branch, but forbid them to reorder with preceding instructions. In
this way, we realized a simplified version of SpecuSym into SymO3 and evaluated its effect upon
the original SymO3.
Table 7 presents the result of the enhanced SymO3 against the original SymO3 framework. Let

us name the former as SymO3+ for short. We compile the benchmarks with option -O0 to avoid
the interferences of compiler optimizations. Also, we use the same cache parameters for previous
experiments for consistency purposes. We set RBS to 64 since it is closer to the practical situation.
We also exclude the programs with unchanged results between SymO3 and SymO3+ in terms of the
amount and locations of detected leaks. Columns 3-5 show the differential results between SymO3

and SymO3+. The result shows that 6 out of 24 programs now have new leaks. Furthermore, we
analyze the results in more detail as follows.
Overall, SymO3+ shows an increasing trend in the execution time and the out-of-order trace

amount, due to the addition of speculated events into the symbolic execution paths. Moreover,
the number of leaky programs and their leaks also increase, indicating that speculative execution
indeed exacerbates the leak situations.
Note that SymO3 detected leaks in five programs shown in Table 3. By comparison, SymO3+

detected new leaks in six programs, including the AES [LibTomCrypt 2019], which was also reported
by SymO3. The two programs that SymO3+ identified no leak, but SymO3 detected leaks are

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:25

--

980 ulong32 Tks0[], Tks1[], Tks2[], Tks3[]; //static array

...

1223 ulong32 temp;

1312 ulong32* rk = skey->rijndael.eK; //skey->rijndael.eK: private data

1313 ulong32* rrk = skey->rijndael.eK + (28 + keylen) - 4;

...

1354 temp = rrk[3];

1355 rk[3] =

1356 Tks0[byte(temp, 3)] ∧

1357 Tks1[byte(temp, 2)] ∧

1358 Tks2[byte(temp, 1)] ∧

1359 Tks3[byte(temp, 0)]; //leaking site

--

64-byte

1356L1&1357L1&1358L1 1356L2 1357L2 1358L2

..., temp, ... Tks0[temp[3]], ... Tks1[temp[2]], ... Tks2[temp[1]], ...

The In-order Cache Mapping

1356L2 1357L2 1358L2 1355L1

Tks0[temp[3]], ... Tks1[temp[2]], ... Tks2[temp[1]],, rk , ...

The Out-of-order Cache Mapping

Fig. 9. The code snippet and cache mappings in AES [LibTomCrypt 2019].

DES [LibTomCrypt 2019] and Seed [Tegra 2018]. By contrast, another two DES programs, DES
[OpenSSL 2019] and DES [glibc 2019], now have leaks in SymO3+. This fact shows that the latter
two DES implementations are more vulnerable due to the speculated events, while out-of-order
execution can impact the former two programs.

The most significant differences are from AES [LibTomCrypt 2019] and chacha20 [LibTomCrypt
2019]. Based on the significant amount of increased traces, SymO3+ identifies 64 and 66 more
leaks in them, respectively. Also, all chacha20 [LibTomCrypt 2019] leaks are C-type leaks. The
blowfish [LibTomCrypt 2019] merely has two more D-type leaks under two caches, despite the
increased 109,926 traces. The encoder[LibTomCrypt 2019] has six new traces and six new leaks in
both caches. These four benchmarks show that speculative execution can give rise to both new
out-of-order behaviors and new timing leaks.
The rest two DES benchmarks present different results. Though speculative execution raises

no new out-of-order traces, it brings both C-type and D-type leaks, to DES [OpenSSL 2019] and
DES [glibc 2019]. Recall that SymO3 reports no timing leaks in these benchmarks in Table 3; this
situation means speculative execution can undoubtedly change the cache state by interfering with
other memory events.

Based on the above experimental findings, we now answer RQ3: SymO3 can support speculative
execution in its dynamic analysis. The experimental results show that the modeled speculative
execution increases new out-of-order behaviors and raises new timing leaks compared to the original
SymO3 results in Table 3.

5.5 The Case Study

SymO3 develops an approach that not only pinpoints the problematic memory instructions but
also generates concrete inputs and specific execution orders to manifest the leaks. For illustration,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

147:26 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

we exemplify the results of SymO3 by studying a leak in AES [LibTomCrypt 2019] with the -O0
compilation option based on RBS:32 and a 32K4W cache.
Fig. 9 extracts the code snippet of setting up the forward key in AES [LibTomCrypt 2019]. The

four Tks arrays are constant S-Boxes while skey->rijandael.eK is the private data from the user
input. In normal in-order execution, this program does not manifest any leak at line 1359 as the
cache is always-hit no matter what the private data is. However, the cache timing leaks could
emerge when the out-of-order execution takes effect. At line 1354, the algorithm assigns the variable
temp with 4-byte private data symbolized by SymO3. Among lines 1356-1359, the four S-Boxes and
the temp array are independently accessed.

Thus, the execution order of these load instructions might be shuffled by out-of-order execution
to some extent, depending on which one gets ready faster in real execution. In this study, we
assume that each instruction has the same chance to be scheduled beforehand. For example, the
independent memory load events within lines 1356-1359 may execute in various orders.
Take the code Tks0[byte(temp,3)] at line 1356 as the example, which can break into two

memory load events. We name the events as 1356L1 and 1356L2. The first load, 1356L1, reads the
1-byte data of address temp+3, while the second load, 1356L2, uses the retrieved 1-byte value as
the index to read Tks0. The code from lines 1357 to 1359 has the same patterns, and we similarly
name their memory events. Another example, the rk[3]= at line 1355, consists of one load event
of rk and one store event to rk+3. We name them as 1355L1 and 1355S1. Thereby, an ideal in-order
event sequence would faithfully follow the program order to be "1356L1-1356L2-1357L1-1357L2-
1358L1-1358L2-1359L1-1359L2-1355L1-1355S1".

As analyzed by SymO3 , when the code from 1356 to 1359 executes in the order of "1356L1-
1357L1-1358L1-1356L2-1357L2-1358L2-1355L1-1359L1", a leak appears at 1359L1. The reason for
this leak is because of the beforehand executions of 1357L1, 1358L1, and 1355L1. As displayed in
Figure 9, in the in-order execution, 1356L1 loads the whole 4-byte temp data into the cache. The
following reading operations of arrays Tks0, Tks1, and Tks2 would not evict the recently used data
temp from the cache; thus, they load data into the remaining three lines of the set.

In this case, event 1359L1, which corresponds to byte(temp, 0), would have cache always-hit
since temp is always in the cache at the time executing 1359L1. By contrast, in the reported new
execution order, 1358L1 executes before 1356L2, where the subsequent four events, i.e., 1356L2-
1357L2-1358L2-1355L1) jointly occupy the cache lines. Now, when reaching the last event 1359L1,
temp may no longer stay in the cache and make 1359L1 cause a miss. By constraint solving, SymO3

confirms that when the private data turns to be 0x105dc88cfa5f8739d59f3f6b67aaa4a, 1359L1
misses the cache and triggers a leak.

6 THREATS TO VALIDITY

SymO3 does not consider aggressive memory execution schemes like store-to-load forwarding [Sha
et al. 2005], memory disambiguation [Önder and Gupta 1999], and memory dependence speculation
[Moshovos and Sohi 2000]. Also, we assume that the memory model has sequential consistency.
Taking these features into consideration needs further investigation.

SymO3 takes the LLVM [Lattner and Adve 2004] IR to perform the symbolic analysis. As certain
optimizations could be enabled when generating the machine code from the IR; the instruction
flow that our analysis follows may vary from the actual flow in the executable. The inconsistency
could cause inaccuracy of the analysis. An alternative is to decompile the machine code into the
IR [Cha et al. 2012; KLEE-Native 2019; Saudel and Salwan 2013; Stephens et al. 2016] for further
analysis. However, the accuracy loss is inevitable. The balance between the low-level precise data
flow and the high-level program semantics still deserves an in-deep study.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:27

Another threat lies with the choice of reorder buffer size for out-of-order execution. As different
architectures are configured with different settings, the constant window parameter may lead to
the imprecision of analysis. Lastly, SymO3 does not offer the capability of analyzing multi-threaded
programs, and supporting both out-of-order execution and concurrency results in prohibitively
huge state space, which requires further research in future work.

7 RELATED WORK

Recent side-channel based attacks [Bulck et al. 2018; Guarnieri et al. 2020; Lipp et al. 2018], originated
from the out-of-order execution, have received tremendous attention from both industry and
academia. The side effects of out-of-order execution have been studied in the real-time system
domain since the 1990s. A real-time system program should guarantee to finish within a specified
time-bound, and the out-of-order execution plays a vital role in program execution time estimation.
Antonie et al.[Colin and Puaut 2000] presented the worst-case execution time (a.k.a. WCET)

analysis techniques for processors with branch prediction. Li et al. [Li et al. 2006] proposed an
abstract model for WCET estimation for the out-of-order superscalar pipelines. Some commercial
tools for WCET estimation, such as aiT [Wilhelm et al. 2010], also take into account of out-of-order
pipelines and caches during the analysis. Recently, Wu et al. [Wu and Wang 2019] developed
abstract analysis for cache state under speculative execution, which can be applied to both WCET
estimation and side-channel leak detection.
In out-of-order execution analysis, various static analysis techniques have been adopted, e.g.,

the discussed timing analysis [Colin and Puaut 2000; Wu and Wang 2019] on out-of-order pipeline
and cache. Besides, [Lahiri et al. 2002; Skakkebñk et al. 1998] applied formal methods to prove the
correctness of out-of-order execution. The processor simulation tools [Burger and Austin 1997; Pai
et al. 1997; Schnarr and Larus 1998] also modeled out-of-order execution, but they mainly focused
on the precision and performance of the simulation.

Traditional side-channel analysis usually utilizes abstract interpretation based techniques [Doy-
chev et al. 2013; Wang et al. 2019], symbolic execution methods [Bang et al. 2016, 2018; Basu and
Chattopadhyay 2017; Chattopadhyay 2017; Chattopadhyay et al. 2017; Guo et al. 2018; Phan et al.
2017] or other formal approaches [Antonopoulos et al. 2017; Chen et al. 2017; Metta et al. 2016].
Still, none of them takes the out-of-order execution into account. Recent work [Guo et al. 2020;

Wu and Wang 2019] have proposed static and dynamic approaches in modeling microarchitectural
speculative execution at the software level. However, they addressed the branch prediction problems
relevant to speculative execution while this work concentrates on the finer-granularity instruction-
level out-of-order scheduling.

8 CONCLUSION

In this paper, we extended the applicability of symbolic execution to out-of-order execution for
cache timing leak detection. By developing new modeling, reduction, and analysis components, we
proposed the SymO3 framework, which successfully identified cache timing leaks in real-world
cipher programs. Although the primary goal here is to discover the cache timing side-channel leaks,
the technical attempts made to tailor symbolic execution for out-of-order execution is general. We
look forward to adopting the techniques for other analysis scenarios.

ACKNOWLEDGEMENTS

This work was partially supported by the National Science Foundation of China (No. 61932021
61802168, and 61972290), and the Natural Science Foundation of Jiangsu Province (No. BK20191247).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

147:28 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

REFERENCES

A. Abel and J. Reineke. uops.info: Characterizing latency, throughput, and port usage of instructions on intel microarchitec-

tures. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, pages 673ś686, 2019.

A. C. Aldaya, C. P. García, L. M. A. Tapia, and B. B. Brumley. Cache-timing attacks on RSA key generation. IACR Trans.

Cryptogr. Hardw. Embed. Syst., 2019(4):213ś242, 2019. doi: 10.13154/tches.v2019.i4.213-242. URL https://doi.org/10.13154/

tches.v2019.i4.213-242.

T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and S. Wei. Decomposition instead of self-composition for

proving the absence of timing channels. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 362ś375, 2017.

L. Bang, A. Aydin, Q. Phan, C. S. Pasareanu, and T. Bultan. String analysis for side channels with segmented oracles. In

Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016, Seattle,

WA, USA, November 13-18, 2016, pages 193ś204, 2016.

L. Bang, N. Rosner, and T. Bultan. Online synthesis of adaptive side-channel attacks based on noisy observations. In 2018

IEEE European Symposium on Security and Privacy, EuroS&P 2018, London, United Kingdom, April 24-26, 2018, pages

307ś322, 2018.

G. Barthe, B. Köpf, L. Mauborgne, and M. Ochoa. Leakage resilience against concurrent cache attacks. In Principles of

Security and Trust - Third International Conference, POST 2014, pages 140ś158, 2014.

T. Basu and S. Chattopadhyay. Testing cache side-channel leakage. In 2017 IEEE International Conference on Software Testing,

Verification and Validation Workshops, ICST Workshops 2017, Tokyo, Japan, March 13-17, 2017, pages 51ś60, 2017.

T. Basu, K. Aggarwal, C. Wang, and S. Chattopadhyay. An exploration of effective fuzzing for side-channel cache leakage.

Softw. Test., Verif. Reliab., 30(1), 2020.

T. Bergan, D. Grossman, and L. Ceze. Symbolic execution of multithreaded programs from arbitrary program contexts. In

OOPSLA, pages 491ś506, 2014.

R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. T. Kandemir. Casym: Cache aware symbolic execution for side channel

detection and mitigation. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23,

2019, pages 505ś521. IEEE, 2019.

S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic execution for automated real-world software testing. In

European Conference on Computer Systems, Proceedings of the Sixth European conference on Computer systems, EuroSys

2011, Salzburg, Austria, April 10-13, 2011, pages 183ś198, 2011.

J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx.

Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution. In 27th USENIX

Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018., pages 991ś1008, 2018.

D. Burger and T. M. Austin. The simplescalar tool set, version 2.0. ACM SIGARCH computer architecture news, 25(3):13ś25,

1997.

C. Cadar. Targeted program transformations for symbolic execution. In Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, pages 906ś909, 2015.

C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unassisted and automatic generation of high-coverage tests for complex

systems programs. In 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2008, December

8-10, 2008, San Diego, California, USA, Proceedings, pages 209ś224, 2008.

S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing mayhem on binary code. In IEEE Symposium on Security and

Privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA, pages 380ś394, 2012.

S. Chattopadhyay. Directed automated memory performance testing. In Tools and Algorithms for the Construction and

Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS, pages 38ś55, 2017.

S. Chattopadhyay, M. Beck, A. Rezine, and A. Zeller. Quantifying the information leak in cache attacks via symbolic

execution. In Proceedings of the 15th ACM-IEEE International Conference on Formal Methods and Models for System Design,

MEMOCODE 2017, Vienna, Austria, September 29 - October 02, 2017, pages 25ś35, 2017.

J. Chen, Y. Feng, and I. Dillig. Precise detection of side-channel vulnerabilities using quantitative cartesian hoare logic. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages 875ś890, 2017.

J. Chen, W. Hu, L. Zhang, D. Hao, S. Khurshid, and L. Zhang. Learning to accelerate symbolic execution via code transfor-

mation. In 32nd European Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam, The

Netherlands, pages 6:1ś6:27, 2018.

D. Chu, J. Jaffar, and R. Maghareh. Precise cache timing analysis via symbolic execution. In 2016 IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), Vienna, Austria, April 11-14, 2016, pages 293ś304, 2016.

L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea. Cloud9: a software testing service. Operating Systems Review,

43(4):5ś10, 2009.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

https://doi.org/10.13154/tches.v2019.i4.213-242
https://doi.org/10.13154/tches.v2019.i4.213-242

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:29

L. A. Clarke. A program testing system. In Proceedings of the 1976 Annual Conference, Houston, Texas, USA, October 20-22,

1976, pages 488ś491, 1976.

A. Colin and I. Puaut. Worst case execution time analysis for a processor with branch prediction. Real-Time Systems, 18

(2-3):249ś274, 2000.

B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter. Practical mitigations for timing-based side-channel

attacks on modern x86 processors. In 2009 30th IEEE Symposium on Security and Privacy, pages 45ś60, May 2009. doi:

10.1109/SP.2009.19.

M. Dellinger, P. Garyali, and B. Ravindran. chronos. Chronos linux: a besteffort real-time multiprocessor linux kernel, 2011.

J. Dhem, F. Koeune, P. Leroux, P. Mestré, J. Quisquater, and J. Willems. A practical implementation of the timing attack. In

Smart Card Research and Applications, This International Conference, CARDIS ’98, Louvain-la-Neuve, Belgium, September

14-16, 1998, Proceedings, pages 167ś182, 1998.

D. Dinu, Y. L. Corre, D. Khovratovich, L. Perrin, J. Großschädl, and A. Biryukov. triathlon. Triathlon of lightweight block

ciphers for the internet of things., 2015.

C. Disselkoen, D. Kohlbrenner, L. Porter, and D. M. Tullsen. Prime+abort: A timer-free high-precision L3 cache attack using

intel TSX. In 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017., pages

51ś67, 2017.

S. Dong, O. Olivo, L. Zhang, and S. Khurshid. Studying the influence of standard compiler optimizations on symbolic

execution. In 26th IEEE International Symposium on Software Reliability Engineering, ISSRE 2015, Gaithersbury, MD, USA,

November 2-5, 2015, pages 205ś215, 2015.

G. Doychev and B. Köpf. Rigorous analysis of software countermeasures against cache attacks. In Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23,

2017, pages 406ś421, 2017.

G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and J. Reineke. Cacheaudit: A tool for the static analysis of cache side channels.

In Proceedings of the 22th USENIX Security Symposium, Washington, DC, USA, August 14-16, 2013, pages 431ś446, 2013.

Y. Etsion. Computer Architecture: Out-of-order Execution. https://iis-people.ee.ethz.ch/~gmichi/asocd/addinfo/Out-of-

Order_execution.pdf, 2013.

C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software. In J. Palsberg and M. Abadi,

editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005,

Long Beach, California, USA, January 12-14, 2005, pages 110ś121. ACM, 2005.

FourQLib. FourQLib. https://github.com/Microsoft/FourQlib/, 2020.

freeradius. freeradius. https://freeradius.org/, 2020.

GDK. GDK. GDK Library https://developer.gnome.org/gdk3/3.22/, 2018.

glibc. glibc-2.29.9000. https://www.gnu.org/software/libc/, 2019.

B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida. ASLR on the line: Practical cache attacks on the MMU. In 24th

Annual Network and Distributed System Security Symposium, NDSS 2017, San Diego, California, USA, February 26 - March

1, 2017. The Internet Society, 2017.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+flush: A fast and stealthy cache attack. In Proceedings of the 13th

International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment - Volume 9721, DIMVA 2016,

page 279ś299, Berlin, Heidelberg, 2016. Springer-Verlag. ISBN 9783319406664.

M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez. Spectector: Principled detection of speculative information

flows. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020, pages 1ś19.

IEEE, 2020. doi: 10.1109/SP40000.2020.00011. URL https://doi.org/10.1109/SP40000.2020.00011.

S. Guo, M. Kusano, C. Wang, Z. Yang, and A. Gupta. Assertion guided symbolic execution of multithreaded programs. In

ACM SIGSOFT Symposium on Foundations of Software Engineering, pages 854ś865, 2015.

S. Guo, M. Wu, and C. Wang. Adversarial symbolic execution for detecting concurrency-related cache timing leaks. In

Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations

of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, pages 377ś388, 2018.

S. Guo, Y. Chen, P. Li, Y. Cheng, H.Wang, M.Wu, and Z. Zuo. Specusym: Speculative symbolic execution for cache timing leak

detection. In Proceedings of the 42th International Conference on Software Engineering: Companion Proceeedings, ICSE 2020,

Seoul, South Korea, pages 1235ś1247, 2020. doi: 10.1145/3377811.3380428. URL https://doi.org/10.1145/3377811.3380428.

J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. WCET@mdh. The Mälardalen WCET Benchmarks ś Past, Present and

Future, 2010.

T. Gysi, T. Grosser, L. Brandner, and T. Hoefler. A fast analytical model of fully associative caches. In K. S. McKinley and

K. Fisher, editors, Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 816ś829. ACM, 2019.

S. He, M. Emmi, and G. F. Ciocarlie. ct-fuzz: Fuzzing for timing leaks. CoRR, abs/1904.07280, 2019.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

https://iis-people.ee.ethz.ch/~gmichi/asocd/addinfo/Out-of-Order_execution.pdf
https://iis-people.ee.ethz.ch/~gmichi/asocd/addinfo/Out-of-Order_execution.pdf
https://github.com/Microsoft/FourQlib/
https://freeradius.org/
https://www.gnu.org/software/libc/
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1145/3377811.3380428

147:30 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

Intel. The SkyLake Microarchitecture. https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-

architectures-optimization-manual.pdf, 2016.

J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385ś394, 1976.

KLEE-Native. Binary Symbolic Execution with KLEE-Native. https://github.com/lifting-bits/klee#klee-native, 2019.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and

Y. Yarom. Spectre attacks: Exploiting speculative execution. In 40th IEEE Symposium on Security and Privacy (S&P’19),

2019.

P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In Advances in Cryptology

- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996,

Proceedings, pages 104ś113, 1996.

M. Kusano and C. Wang. Thread-modular static analysis for relaxed memory models. In E. Bodden, W. Schäfer, A. van

Deursen, and A. Zisman, editors, Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,

ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pages 337ś348. ACM, 2017.

S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling and verification of out-of-order microprocessors in uclid. In International

Conference on Formal Methods in Computer-Aided Design, pages 142ś159. Springer, 2002.

C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program analysis & transformation. In 2nd IEEE/ACM

International Symposium on Code Generation and Optimization, 20-24 March 2004, San Jose, CA, USA, pages 75ś88, 2004.

C. Lee, M. Potkonjak, and W. Mangione-Smith. mediabench. MediaBench: a tool for evaluating and synthesizing multimedia

and communications systems, 1997.

X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-order processors for software timing analysis. In Proceedings of the

25th IEEE Real-Time Systems Symposium, 5-8 December 2004, Lisbon, Portugal, pages 92ś103, 2004.

X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-order processors for WCET analysis. Real-Time Systems, 34(3):

195ś227, 2006.

libfixedtimefixedpoint. libfixedtimefixedpoint. A library for doing constant-time fixed-point numeric operations:

https://github.com/kmowery/libfixedtimefixedpoint/, 2017.

Libgcrypt. Libgcrypt-1.8.4. https://gnupg.org/software/libgcrypt/index.html, 2018.

LibTomCrypt. LibTomCrypt. http://www.libtom.net/LibTomCrypt/, 2019.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and

M. Hamburg. Meltdown: Reading kernel memory from user space. In 27th USENIX Security Symposium, USENIX Security

2018, Baltimore, MD, USA, August 15-17, 2018, pages 973ś990, 2018.

mbedTLS. mbedTLS. https://tls.mbed.org/code/releases/, 2017.

R. Metta, M. Becker, P. Bokil, S. Chakraborty, and R. Venkatesh. TIC: a scalable model checking based approach to WCET

estimation. In T. Kuo and D. B. Whalley, editors, Proceedings of the 17th ACM SIGPLAN/SIGBED Conference on Languages,

Compilers, Tools, and Theory for Embedded Systems, LCTES 2016, Santa Barbara, CA, USA, June 13 - 14, 2016, pages 72ś81.

ACM, 2016. doi: 10.1145/2907950.2907961. URL https://doi.org/10.1145/2907950.2907961.

A. Moshovos and G. S. Sohi. Memory dependence speculation tradeoffs in centralized, continuous-window superscalar

processors. In Proceedings of the Sixth International Symposium on High-Performance Computer Architecture, Toulouse,

France, January 8-12, 2000, pages 301ś312, 2000.

S. Nilizadeh, Y. Noller, and C. S. Pasareanu. Diffuzz: differential fuzzing for side-channel analysis. In Proceedings of the 41st

International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 176ś187, 2019.

O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer. Specfuzz: Bringing spectre-type vulnerabilities to the surface. In

S. Capkun and F. Roesner, editors, 29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020, pages

1481ś1498. USENIX Association, 2020.

S. Önder and R. Gupta. Dynamic memory disambiguation in the presence of out-of-order store issuing. In Proceedings of the

32nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 32, Haifa, Israel, November 16-18, 1999,

pages 170ś176, 1999.

OpenSSL. OpenSSL-1.1.1c. https://mta.openssl.org/pipermail/openssl-announce/2019-May/000153.html, 2019.

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. The spy in the sandbox: Practical cache attacks in javascript

and their implications. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,

CCS ’15, page 1406ś1418, New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450338325. doi:

10.1145/2810103.2813708. URL https://doi.org/10.1145/2810103.2813708.

D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: The case of AES. In Topics in Cryptology -

CT-RSA 2006, The Cryptographers’ Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2006, Proceedings,

pages 1ś20, 2006.

V. S. Pai, P. Ranganathan, and S. V. Adve. Rsim: An execution-driven simulator for ilp-based shared-memory multiprocessors

and uniprocessors. IEEE Technical Committee on Computer Architecture Newsletter, 1997.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://github.com/lifting-bits/klee#klee-native
https://gnupg.org/software/libgcrypt/index.html
http://www.libtom.net/LibTomCrypt/
https://tls.mbed.org/code/releases/
https://doi.org/10.1145/2907950.2907961
https://mta.openssl.org/pipermail/openssl-announce/2019-May/000153.html
https://doi.org/10.1145/2810103.2813708

Exposing Cache Timing Side-Channel Leaks through Out-of-Order Symbolic Execution 147:31

C. S. Pasareanu and N. Rungta. Symbolic pathfinder: symbolic execution of java bytecode. In ASE 2010, 25th IEEE/ACM

International Conference on Automated Software Engineering, Antwerp, Belgium, September 20-24, 2010, pages 179ś180,

2010.

Q. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan. Synthesis of adaptive side-channel attacks. IACR Cryptology

ePrint Archive, 2017:401, 2017.

S. Poeplau and A. Francillon. Systematic comparison of symbolic execution systems: intermediate representation and its

generation. In Proceedings of the 35th Annual Computer Security Applications Conference, ACSAC 2019, San Juan, PR, USA,

December 09-13, 2019, pages 163ś176, 2019.

S. Poeplau and A. Francillon. Symbolic execution with symcc: Don’t interpret, compile! In S. Capkun and F. Roesner, editors,

29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020, pages 181ś198. USENIX Association, 2020.

C. Rapier and B. Bennett. High speed bulk data transfer using the SSH protocol. In Proceedings of the 15th ACM Mardi Gras

conference: From lightweight mash-ups to lambda grids: Understanding the spectrum of distributed computing requirements,

applications, tools, infrastructures, interoperability, and the incremental adoption of key capabilities, Baton Rouge, Louisiana,

USA, January 29 - February 3, 2008, page 11, 2008.

F. Saudel and J. Salwan. Triton: A Dynamic Binary Analysis Framework. https://triton.quarkslab.com/, 2013.

E. Schnarr and J. R. Larus. Fast out-of-order processor simulation using memoization. ACM SIGPLAN Notices, 33(11):283ś294,

1998.

T. Sha, M. M. K. Martin, and A. Roth. Scalable store-load forwarding via store queue index prediction. In 38th Annual

IEEE/ACM International Symposium on Microarchitecture, 12-16 November 2005, Barcelona, Spain, pages 159ś170, 2005.

J. U. Skakkebñk, R. B. Jones, and D. L. Dill. Formal verification of out-of-order execution using incremental flushing. In

International Conference on Computer Aided Verification, pages 98ś109. Springer, 1998.

J. E. Smith and A. R. Pleszkun. Implementation of precise interrupts in pipelined processors. In Proceedings of the 12th

Annual Symposium on Computer Architecture, Boston, MA, USA, June 1985, pages 36ś44, 1985.

N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Driller:

Augmenting fuzzing through selective symbolic execution. In 23rd Annual Network and Distributed System Security

Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016, 2016.

Tegra. Kernel tree for NVIDIA Tegra family SOICs on Android. https://android.googlesource.com/kernel/tegra/+/android-

8.1.0_r0.113/crypto, 2018.

G. Wang, S. Chattopadhyay, A. K. Biswas, T. Mitra, and A. Roychoudhury. Kleespectre: Detecting information leakage

through speculative cache attacks via symbolic execution. ACM Trans. Softw. Eng. Methodol., 29(3):14:1ś14:31, 2020. doi:

10.1145/3385897. URL https://doi.org/10.1145/3385897.

S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu. Cached: Identifying cache-based timing channels in production software.

In E. Kirda and T. Ristenpart, editors, 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,

August 16-18, 2017, pages 235ś252. USENIX Association, 2017.

S. Wang, Y. Bao, X. Liu, P. Wang, D. Zhang, and D. Wu. Identifying cache-based side channels through secret-augmented

abstract interpretation. In 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16,

2019, pages 657ś674, 2019.

O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom.

Foreshadow-NG: Breaking the virtual memory abstraction with transient out-of-order execution. Technical report, 2018.

J. Wichelmann, A. Moghimi, T. Eisenbarth, and B. Sunar. Microwalk: A framework for finding side channels in binaries. In

Proceedings of the 34th Annual Computer Security Applications Conference, ACSAC 2018, San Juan, PR, USA, December

03-07, 2018, pages 161ś173, 2018.

R. Wilhelm, S. Altmeyer, C. Burguière, D. Grund, J. Herter, J. Reineke, B. Wachter, and S. Wilhelm. Static timing analysis for

hard real-time systems. In International Workshop on Verification, Model Checking, and Abstract Interpretation, pages

3ś22, 2010.

M. Wu and C. Wang. Abstract interpretation under speculative execution. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 57ś69, 2019.

Y. Xiao, M. Li, S. Chen, and Y. Zhang. Stacco: Differentially analyzing side-channel traces for detecting ssl/tls vulnerabilities

in secure enclaves. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’17, page 859ś874, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450349468. doi:

10.1145/3133956.3134016. URL https://doi.org/10.1145/3133956.3134016.

Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby. Efficient stateful dynamic partial order reduction. In Model Checking

Software, 15th International SPIN Workshop, Los Angeles, CA, USA, August 10-12, 2008, Proceedings, pages 288ś305, 2008.

Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby. Distributed dynamic partial order reduction. STTT, 12(2):113ś122,

2010.

Y. Yarom and K. Falkner. FLUSH+RELOAD: A high resolution, low noise, L3 cache side-channel attack. In Proceedings of the

23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014., pages 719ś732, 2014.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

https://triton.quarkslab.com/
https://android.googlesource.com/kernel/tegra/+/android-8.1.0_r0.113/crypto
https://android.googlesource.com/kernel/tegra/+/android-8.1.0_r0.113/crypto
https://doi.org/10.1145/3385897
https://doi.org/10.1145/3133956.3134016

147:32 Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang

J. Yu, L. Hsiung, M. E. Hajj, and C. W. Fletcher. Data oblivious ISA extensions for side channel-resistant and high performance

computing. In 26th Annual Network and Distributed System Security Symposium, NDSS 2019, San Diego, California, USA,

February 24-27, 2019, 2019.

Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. Homealone: Co-residency detection in the cloud via side-channel analysis. In

2011 IEEE symposium on security and privacy, pages 313ś328. IEEE, 2011.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 147. Publication date: November 2020.

	Abstract
	1 Introduction
	2 Motivation
	2.1 The Running Example
	2.2 Out-of-Order Execution Brings Timing Leak
	2.3 The Out-of-Order Statistics on Running P

	3 Preliminaries
	3.1 The Out-of-Order Execution
	3.2 The Cache Basics
	3.3 The Cache Timing Leaks
	3.4 The Threat Model

	4 Out-of-order Symbolic Execution
	4.1 The Baseline Symbolic Execution
	4.2 The Out-of-Order Generation
	4.3 The Reorder Necessity Analysis
	4.4 The Reorder Modeling
	4.5 Cache Leak Analysis

	5 Evaluation
	5.1 Benchmarks and Research Questions
	5.2 The Leak Detection
	5.3 The Program Transformation Impact
	5.4 The Compound Analysis with Speculation
	5.5 The Case Study

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

